Plot a curve on vertical axis
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
federico nutarelli
el 20 de Sept. de 2021
Comentada: federico nutarelli
el 20 de Sept. de 2021
Hi all,
I am producin the following image (the red arrows and the red circles are added artificially using a picture software to let you better understand the question):
The plot above has been produceed with the following mwe code:
clear
percorso=1;
angle_in_degrees=75;
theta = deg2rad(angle_in_degrees);
l=2*pi;
if percorso ==1
%da 0 a pi-epsilon
if theta>=0 && theta<=deg2rad(45)
s_bar = l/(2*abs(cos(theta)));
elseif theta>deg2rad(45) && theta<=deg2rad(90)
s_bar=l/(2*abs(sin(theta)));
elseif theta>-deg2rad(90) && theta<=-deg2rad(45)
s_bar=l/(2*abs(sin(theta)));
elseif theta>=-deg2rad(45) && theta<=0
s_bar = l/(2*abs(cos(theta)));
elseif theta>=deg2rad(90) && theta<=deg2rad(135)
s_bar=l/(2*abs(sin(theta)));
elseif theta> deg2rad(135) && theta<=deg2rad(180)
s_bar = l/(2*abs(cos(theta)));
elseif theta>=-deg2rad(180) && theta<=-deg2rad(135)
s_bar = l/(2*abs(cos(theta)));
elseif theta>=-deg2rad(135) && theta<=-deg2rad(90)
s_bar = l/(2*abs(sin(theta)));
end
elseif percorso==0
theta=0;
s_bar = l/(2*abs(cos(theta)));
end
N=250; %frequenza di campionamento (ho 150 campioni)
Delta_s0 = s_bar/N;
Delta_s2 = Delta_s0;
epsilon=l/100;
Delta_s1 = epsilon*(pi/2)/N;
s0a =0;
s0b = s_bar-epsilon;
s1a=s0b+Delta_s1;
s1b= s0b+epsilon*(pi/2);
s2a=s1b+Delta_s2;
s2b=s1b+s_bar-epsilon;
s0=[s0a:Delta_s0:s0b];
s1=[s1a:Delta_s1:s1b];
s2=[s2a:Delta_s2:s2b];
%ascisse plot: k1_ad;
s_cat = [s0 s1 s2];
tratto = zeros(1,size(s_cat,2));
for k=1:size(s0,2)
tratto(:,k)=1;
end
for k=size(s0,2)+1:size(s0,2)+size(s1,2)
tratto(:,k)=2;
end
for k=size(s0,2)+size(s1,2)+1:size(s0,2)+size(s1,2)+size(s2,2)
tratto(:,k)=3;
end
primo_tratto = find(tratto==1);
secondo_tratto = find(tratto==2);
terzo_tratto = find(tratto==3);
conto1 = 1;
conto2 =1;
%%% SBAGLIATO IL TRATTO??? (è rimasto 0 da qualche parte??)
for m=1:size(s_cat,2) %numero di elementi di s
if m<=primo_tratto(size(primo_tratto,2)) %qui devo mettere m! (devo mettere un find fino a quando tratto è ==1)
k1_ad(m)=s0(m);
k2_ad(m)=0;
elseif m>primo_tratto(size(primo_tratto,2)) && m<=secondo_tratto(size(secondo_tratto,2))
k1_ad(m)=s0b+(epsilon)*cos(((s_cat(m)-s0b)/epsilon)-(pi/2));
k2_ad(m)=epsilon+(epsilon)*sin(((s_cat(m)-s0b)/epsilon)-(pi/2));
conto1=conto1+1;
elseif m>secondo_tratto(size(secondo_tratto,2)) && m<=terzo_tratto(size(terzo_tratto,2))
k1_ad(m)=k1_ad(secondo_tratto(size(secondo_tratto,2))); %perchè sono spostato di un tratto s_bar dall'asse y
k2_ad(m)=s2(conto2)-s1b+epsilon;
conto2=conto2+1;
end
end
What I would like to do is written on the image and is basically reproducing the "smoothed angle" on the top right corner also on the top so that the image looks like this (red curved line with, however radius epsilon as in the mwe. It shoul basically be exactly the same angle as the smoothed below but "reversed"):
2 comentarios
Respuestas (1)
darova
el 20 de Sept. de 2021
Editada: darova
el 20 de Sept. de 2021
What about this
a = 30; % left corner angle
L = 10; % triangle size
r = 1; % arc radius
t1 = 0:90+a; % top corner arc
t2 = 90+a:270; % left corner arc
t3 = 270:360; % bottom right corner arc
[x1,y1] = pol2cart(deg2rad(t1),r);
[x2,y2] = pol2cart(deg2rad(t2),r);
[x3,y3] = pol2cart(deg2rad(t3),r);
y1 = y1 + L*sind(a); % translate first arc to top
x2 = x2 - L*cosd(a); % translate second arc to right
x = [x1 x2 x3 x1(1)];
y = [y1 y2 y3 y1(1)];
plot(x,y,'.-r')
axis equal
Ver también
Categorías
Más información sobre Smoothing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!