Non convex objective funtion
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Nikolas Spiliopoulos
el 22 de Sept. de 2021
Comentada: Nikolas Spiliopoulos
el 23 de Sept. de 2021
Hi there,
I a have an objective function which in some areas is not convex.
Is there any way to relax it and then use fmin con ?
thanks!!
Here I have writen a piece of code to prove that second derivative for a particular temeprature T_ext is negative:
cell_capacity=45;
T_ext=25;
T=273.15+T_ext;
B2=-0.0067*T+2.35;
%% B1
a=8.89*10^-6;
b=-0.0053;
c=0.7871;
B1=a*T^2+b*T+c;
syms x
f=B1*exp(B2*x/cell_capacity)*(x^2/(2*0.8*cell_capacity));
p=diff(f);
q=diff(p);
ff = matlabFunction(q);
x=(0.1*cell_capacity):1:(0.9*cell_capacity);
figure(1)
title('Second derivative for different temperatures')
xlabel('Current (Ah)')
ylabel('second derivative')
plot(x, ff(x))
hold on
ff_final=ff(x)';
5 comentarios
Walter Roberson
el 22 de Sept. de 2021
You can never be sure of global minimality for non-convex , n-dimensional minimization.
... unless you can use calculus to find the complete set of critical points, and you can find all of the boundary points, and you can evaluate the function at all of the critical points and all of the boundary points and select the minima.
However, you need symbolic processing to find critical points once you get beyond fairly simple functions.
Respuestas (0)
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!