How do I get formula for the nth term of this on matlab?
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
cakey
el 24 de Sept. de 2014
Comentada: cakey
el 25 de Sept. de 2014
sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))
I know this limit is 3...but I need to get matlab to give me the first 40 terms. I am confused on how to code it.
3 comentarios
Alberto
el 24 de Sept. de 2014
I think the sucession should be like this:
a_1=sqrt(1)
a_2=sqrt(1 + 2*sqrt(1))
a_3=sqrt(1 + 2*sqrt(1 + 3*sqrt(1)))
...
Has the same limit and doesn't need initial value for recursion.
Respuesta aceptada
Image Analyst
el 24 de Sept. de 2014
What would be inside the parentheses of the 40th sqrt()? Just a 1?
Try a for loop and see what happens
s(40) = 1;
for k = 39 : -1 : 1
s(k) = k * sqrt(s(k+1)+1)
end
8 comentarios
Image Analyst
el 25 de Sept. de 2014
There is no "a". If you want, put a semicolon at the end of the s(k) line and just put s on its own line after the loop to have it print out the whole array.
Más respuestas (3)
Stephen23
el 24 de Sept. de 2014
Editada: Stephen23
el 24 de Sept. de 2014
You could try writing a for loop. The loop would just need to increment down itr = 40:-1:1, and calculates itr*sqrt(1+last_val) , with last_value defined before the loop (what value?).
Check it first with a small number of iterations first (1, 2, 3), to confirm that it calculates the expected values. Then try it with more iterations.
0 comentarios
Roger Stafford
el 24 de Sept. de 2014
Editada: Roger Stafford
el 24 de Sept. de 2014
It doesn't matter what you initialize it at, the limit as n approaches infinity is always 2, not 3.
Correction: You were right. I was in error. The limit is always 3 no matter what your initial value is.
0 comentarios
Roger Stafford
el 25 de Sept. de 2014
Editada: Roger Stafford
el 25 de Sept. de 2014
Since I made an error in my first answer, here is a bit more information. The problem can be expressed this way:
x(1) = sqrt(1+2*x(2))
x(2) = sqrt(1+3*x(3))
x(3) = sqrt(1+4*x(4))
...
x(n-1) = sqrt(1+n*x(n))
Now suppose x(n) were equal to n+2. Then
x(n-1) = sqrt(1+n*(n+2)) = sqrt((n+1)^2) = n+1
x(n-2) = sqrt(1+(n-1)*(n+1)) = sqrt(n^2) = n
...
x(1) = 3
However, if x(n) is not equal to n+2, express its ratio to n+2 as x(n)/(n+2) = 1+e(n). Then we have
1+e(n-1) = x(n-1)/(n+1)
= sqrt((1+n*(n+2)*(1+e(n)))/(n+1)^2)
= sqrt(1+n*(n+2)/(n+1)^2*e(n))
e(n-1) = sqrt(1+n*(n+2)/(n+1)^2*e(n)) - 1
This will always approach zero for sufficiently large n to start with and hence the limit for x(1) must be 3 no matter what the initial value is.
0 comentarios
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!