why vectorization becomes slower?

6 visualizaciones (últimos 30 días)
Nadeem Ahmed
Nadeem Ahmed el 4 de Nov. de 2021
Comentada: Nadeem Ahmed el 7 de Nov. de 2021
I was trying to compute a simple function by 'for' loop but when I vectorized the same function as shown below in 'VECTORISED FORM' instead of improvement in CPU time it becomes slower than 'for' loop, I don't exactly know the reason for this because I am new in vectorization therefore don't even know whether I did vectorization right or wrong
SIMPLE FORM
for i=2:n+1
for j=2:m+1
f1(i,j)= -((+ rho*(((((uyt(i,j) - uyt(i-1,j))/(2*a))+((vxt(i,j) - vxt(i,j-1))/(2*a))))/(2*tao))) + ...
(rho*(((uytold(i,j)-uytold(i-1,j))/(2*a))*((uyt(i,j)-uyt(i-1,j))/(2*a)))) + ...
(rho*(((vyt(i,j)-vyt(i-1,j))/(2*a))*((uxtold(i,j)-uxtold(i,j-1))/(2*b)))) + (rho*(((vytold(i,j)-vytold(i-1,j))/(2*a))*((uxt(i,j)-uxt(i,j-1))/(2*b)))) + ...
(rho*(((vxtold(i,j)-vxtold(i,j-1))/(2*b))*((vxt(i,j)-vxt(i,j-1))/(2*b)))));
end
end
VECTORISED FORM
f1(2:n+1,2:m+1)= -((+ rho.*(((((uyt(2:n+1,2:m+1) - uyt(1:n,2:m+1))./(2.*a))+((vxt(2:n+1,2:m+1) - vxt(2:n+1,1:m))./(2.*a))))./(2.*tao))) + ...
(rho.*(((uytold(2:n+1,2:m+1)-uytold(1:n,2:m+1))./(2.*a)).*((uyt(2:n+1,2:m+1)-uyt(1:n,2:m+1))./(2.*a)))) + ...
(rho.*(((vyt(2:n+1,2:m+1)-vyt(1:n,2:m+1))./(2.*a)).*((uxtold(2:n+1,2:m+1)-uxtold(2:n+1,1:m))./(2.*b)))) + (rho.*(((vytold(2:n+1,2:m+1)-vytold(1:n,2:m+1))./(2.*a)).*((uxt(2:n+1,2:m+1)-uxt(2:n+1,1:m))./(2.*b)))) + ...
(rho.*(((vxtold(2:n+1,2:m+1)-vxtold(2:n+1,1:m))./(2.*b)).*((vxt(2:n+1,2:m+1)-vxt(2:n+1,1:m))./(2.*b)))));

Respuesta aceptada

Matt J
Matt J el 4 de Nov. de 2021
Editada: Matt J el 4 de Nov. de 2021
One reason is that you are extracting the same submatrices multiple times. For example, the expression uyt(2:n+1,2:m+1) appears multiple times in your vectorized code. This operation allocates memory for a new matrix every time you do it. You should really go through your expression and pull out repeated instances of sub-expressions and precompute them.
Also, it looks like you can replace certain expressions like uyt(2:n+1,2:m+1) - uyt(1:n,2:m+1) with diff(). If uyt is of size (n+1)x(m+1), then the latter will be faster, e.g.,
m=2000;
n=2000;
uyt=rand(n+1,m+1);
tic
d_uyt = uyt(2:n+1,2:m+1) - uyt(1:n,2:m+1);
toc
Elapsed time is 0.053775 seconds.
tic
d_uyt = diff(uyt,1,1);
toc
Elapsed time is 0.027445 seconds.
  9 comentarios
Matt J
Matt J el 5 de Nov. de 2021
Editada: Matt J el 5 de Nov. de 2021
So, you have a few options.
(1) Accept the performance of the original loop. Are you sure it is the bottleneck in your code?
(2) Implement the loop in a MEX file. In a MEX, you are not forced to extract data copies of sub-matrices. This can be worthwhile if the code is truly a critical bottleneck (see also option 1).
(3) When you create your matrices, try to avoid embedding the data blocks you'll need later inside larger matrices. In the code you've shown, for example, the first and last row of F53 are never used. Do they need to be there? If you need them, could they be kept in their own separate variables?
Nadeem Ahmed
Nadeem Ahmed el 7 de Nov. de 2021
Thank you for your suggestions.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Logical en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by