negative eigenvalues in sample covariance matrix

2 visualizaciones (últimos 30 días)
yasser
yasser el 10 de Oct. de 2014
Respondida: Matt J el 10 de Oct. de 2014
clc; clear;
N=10; taps=2; snr=0; noise_var=0.05;
h1r=randn(1,taps)/sqrt(2); h1i=randn(1,taps)/sqrt(2); h1=complex(h1r,h1i); h1=h1/norm(h1);
h2r=randn(1,taps)/sqrt(2); h2i=randn(1,taps)/sqrt(2); h2=complex(h2r,h2i); h2=h2/norm(h2);
c1=[h1(1);zeros(1,N-1)']; r1=[h1 zeros(1,N-1)]; H1=toeplitz(c1,r1);
c2=[h2(1);zeros(1,N-1)']; r2=[h2 zeros(1,N-1)]; H2=toeplitz(c2,r2);
H=[H1;H2];
order=64; k=log2(order); n=(taps+N-1)*k; x = randi([0 1],n,1); hMod = comm.RectangularQAMModulator(order); hBitToInt = comm.BitToInteger(k);% Convert the bits in x into k-bit symbols. xsym = step(hBitToInt,x); D = modulate(modem.qammod(order),xsym);
X=awgn(H*D,snr,'measured');
% noise1=sqrt(noise_var/2)*(randn(1,size(H1*D,1))+i*randn(1,size(H1*D,2))); % noise2=sqrt(noise_var/2)*(randn(1,size(H2*D,1))+i*randn(1,size(H2*D,2))); % noise=[noise1.';noise2.']; % % X=H*D+noise;
R=X*X'/size(X,2);
[Q ,eig_val]=eig (R);
the problem is that matrix of eig_val has negative values and this can't happen for sample covariance matrix R any help please

Respuestas (1)

Matt J
Matt J el 10 de Oct. de 2014
I can't run your code, because you haven't provided all variables needed to run it. However, you can expect small magnitude negative eigenvalues due to floating point errors, if your true covariance matrix ix close to singular.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by