Finding the frequency value of a signal
355 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ramo
el 25 de Oct. de 2014
Comentada: Image Analyst
el 26 de Oct. de 2021
How can I find the frequency of this signal?
Thanks,
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/145849/image.png)
2 comentarios
Image Analyst
el 26 de Oct. de 2021
@Yasemin G try this:
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures if you have the Image Processing Toolbox.
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 18;
%==================================================================================
% Image Analyst's code below:
period = 0.57e5
originalFrequency = 1/period
x = linspace(0, 2e5, 2000);
signalAmplitude = 0.85;
perfectSineWave = signalAmplitude * sin(2 * pi * (x - 0.08e5) / period);
subplot(2,1,1);
plot(x, perfectSineWave, 'b-');
grid on;
noiseAmplitude = 0.05;
yNoisy = perfectSineWave + noiseAmplitude * (2 * rand(1, length(x)) - 1);
hold on;
darkGreen = [0, 0.5, 0];
plot(x, yNoisy, '-', 'Color', darkGreen)
yline(0, 'Color', 'b', 'LineWidth', 2)
xlabel('Time or x', 'FontSize',fontSize);
ylabel('Signal', 'FontSize',fontSize);
title('Original Signal', 'FontSize',fontSize);
%==================================================================================
% Harry's code below:
% Assume we capture 8192 samples at 1kHz sample rate
Nsamps = 8192;
fsamp = 1000;
Tsamp = 1/fsamp;
t = (0:Nsamps-1)*Tsamp;
% Choose FFT size and calculate spectrum
Nfft = 1024;
[Pxx,f] = pwelch(yNoisy, gausswin(Nfft), Nfft/2, Nfft,fsamp);
% Plot frequency spectrum
subplot(2,1,2);
plot(f, Pxx, 'b-', 'LineWidth', 2);
ylabel('PSD', 'FontSize',fontSize);
xlabel('Frequency (Hz)', 'FontSize',fontSize);
grid on;
% Get frequency estimate (spectral peak)
[~,loc] = max(Pxx);
FREQ_ESTIMATE = f(loc)
caption = sprintf('Frequency estimate = %f Hz', FREQ_ESTIMATE);
title(caption, 'FontSize',fontSize);
g = gcf;
g.WindowState = 'maximized'
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/779693/image.png)
Respuesta aceptada
Harry
el 26 de Oct. de 2014
Editada: Harry
el 26 de Oct. de 2014
Whenever you're interested in frequency content of a signal, the Fast Fourier Transform is often an excellent tool to use (see help fft). More specifically, Matlab's PWELCH function will provide a Power Spectral Density estimate using Welch's method:
[Pxx,F] = pwelch(X,WINDOW,NOVERLAP,NFFT,Fs)
Here is an example of how to use it to estimate frequency:
close all; clear all; clc;
% Assume we capture 8192 samples at 1kHz sample rate
Nsamps = 8192;
fsamp = 1000;
Tsamp = 1/fsamp;
t = (0:Nsamps-1)*Tsamp;
% Assume the noisy signal is exactly 123Hz
fsig = 123;
signal = sin(2*pi*fsig*t);
noise = 1*randn(1,Nsamps);
x = signal + noise;
% Plot time-domain signal
subplot(2,1,1);
plot(t, x);
ylabel('Amplitude'); xlabel('Time (secs)');
axis tight;
title('Noisy Input Signal');
% Choose FFT size and calculate spectrum
Nfft = 1024;
[Pxx,f] = pwelch(x,gausswin(Nfft),Nfft/2,Nfft,fsamp);
% Plot frequency spectrum
subplot(2,1,2);
plot(f,Pxx);
ylabel('PSD'); xlabel('Frequency (Hz)');
grid on;
% Get frequency estimate (spectral peak)
[~,loc] = max(Pxx);
FREQ_ESTIMATE = f(loc)
title(['Frequency estimate = ',num2str(FREQ_ESTIMATE),' Hz']);
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/176338/image.bmp)
5 comentarios
Image Analyst
el 6 de Abr. de 2017
f is returned by pwelch() - see the documentation for that.
x is defined as "x = signal + noise;" so I don't know why it would say that, unless you tried to use it before you defined it.
Más respuestas (2)
Image Analyst
el 25 de Oct. de 2014
I'd smooth it a bit with a 3rd order Savitzky-Golay filter, sgolayfilt() in the Signal Processing Toolbox, then I'd use findpeaks to get the period and 1/period is the frequency. Attached is a Savitzky-Golay filter demo.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/176331/image.jpeg)
4 comentarios
Image Analyst
el 27 de Mzo. de 2020
Ramo, You chose a frame length, 41, that was far too small. It should be hundreds or thousands because you have 200 thousand data points (which is far too many to see on a single screen without zooming, by the way). Here is corrected code:
% Read in data.
data = dlmread('uapp.txt');
x = data(:, 1);
y = data(:, 2);
% Plot original noisy data.
subplot(1, 3, 2);
plot(x, y, '-');
title('Noisy Data', 'FontSize', 15);
grid on;
% Smooth the data
smoothedY = sgolayfilt(y, 4, 2001);
% Plot smoothed data.
subplot(1, 3, 3);
plot(x, smoothedY, 'r-', 'LineWidth', 2);
grid on;
title('Smoothed Data', 'FontSize', 15);
% Plot both original and smoothed data.
subplot(1, 3, 1);
plot(x, y, '-');
title('Noisy Data', 'FontSize', 15);
grid on;
hold on;
plot(x, smoothedY, 'r-', 'LineWidth', 2);
title('Both Noisy and Smoothed Data', 'FontSize', 15);
% Maximize the window.
g = gcf;
g.WindowState = 'maximized'
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/280106/image.png)
Ramo
el 26 de Oct. de 2014
7 comentarios
Rodrigo Picos
el 27 de Mzo. de 2020
Many years later.....
You should use 'sin3' or 'sin4', and check if you need to use the third or fourth component.
Hint: call F=fit( ) without the ending ;
Ver también
Categorías
Más información sobre Spectral Estimation en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!