Need command for Continuous time fourier transform
40 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ratna
el 17 de Sept. de 2011
Respondida: Juhi Maraskole
el 16 de Sept. de 2020
Hai, I need command for Continuous time fourier transform.I know the command for Discrete time fourier transform.
One more Question, does the both results of Continuous time fourier transform and Discrete time fourier transform the same, or different.
0 comentarios
Respuesta aceptada
Walter Roberson
el 17 de Sept. de 2011
Continuous and Discrete Fourier Transform are the same in the limit case of the steps being infinitesimals.
Other than that, they cannot be compared as they work on two different kinds of information.
0 comentarios
Más respuestas (5)
Wayne King
el 17 de Sept. de 2011
Hi, If you have the Symbolic Toolbox, you can use fourier() to obtain the Fourier transform.
syms x;
f = exp(-x^2);
fourier(f)
Wayne
3 comentarios
Wayne King
el 17 de Sept. de 2011
Hi Ratna, With all due respect, that is not correct.
Please see
>>doc symbolic/fourier
fourier
Fourier integral transform
The examples are not periodic functions of the independent variable.
Wayne
ramakrishna bathini
el 19 de Sept. de 2011
Hi Wayne,
I am wrong, you are correct. But I have a function to find fourier transform over the limits.
How can I do this? As the above function fourier is for [-infinity to infinity]
Thanks,
Ratna.
Wayne King
el 19 de Sept. de 2011
Hi Ratna, You can use assume() to place limits on your variable of integration.
For example
syms x
% create Dirac distribution shifted to -1
f = dirac(x+1)
fourier(f)
% gives exp(w*i)
assume(x>0)
fourier(f)
% gives 0
Wayne
1 comentario
Abdul Qadeer
el 27 de Nov. de 2019
hi, how can we find continous time fourier and transform by using for loop. don't use built in func. plz help.
Walter Roberson
el 19 de Sept. de 2011
I would not recommend the approach of using assumptions. Fourier transforms are defined from -infinity to +infinity and attempts to cheat that are likely to go wrong.
Instead, multiply the function of interest by dirac(x-lowerbound) * dirac(upperbound-x) and fourier() the transformed function.
0 comentarios
Anvesh Samineni
el 31 de Oct. de 2019
continuous-time Fourier series and transforms:
p(t) = A 0 ≤ t ≤ Tp < T
0 otherwise
how can we write the code for this?
0 comentarios
Ver también
Categorías
Más información sobre Discrete Fourier and Cosine Transforms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!