Solving two second order ODEs

13 visualizaciones (últimos 30 días)
Jake Barlow
Jake Barlow el 25 de Dic. de 2021
Comentada: Star Strider el 25 de Dic. de 2021
Hi there!
I am trying to solve for U(t) and V(t) for the two second order ODEs
and ,
where a and w are constants and with the initial conditions and .
Then I want to plot the solutions against for a given time interval.
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
OTV = odeToVectorField([eq1,eq2])
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues1 = deval(ySol,tValues,1); %U(t) solution
yValues2 = deval(ySol,tValues,2); %V(t) solution
plot(yValues1,yValues2)
Does the above code correctly solve the system of differential equations and initial conditions and plot V(t) against U(t)?
If not, then please let me know what is incorrect. Also plese let me know if there is another way to solve the system of ODEs.
Thank you for your help. Much appreciated.

Respuestas (2)

Star Strider
Star Strider el 25 de Dic. de 2021
Essentially, yes.
However it could be made a bit more efficient —
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
vars = 
[OTV,Subs] = odeToVectorField([eq1,eq2])
OTV = 
Subs = 
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues1 = deval(ySol,tValues,1); %U(t) solution
yValues2 = deval(ySol,tValues,2); %V(t) solution
plot(yValues1,yValues2)
% ---------- Slightly More Efficient: Solves Directly & Avoids The 'deval' Calls ----------
interval = [0 5]; %time interval
tValues = linspace(interval(1),interval(2),1000);
[t,y] = ode45(M,tValues,y0);
yValues1 = y(:,1); %U(t) solution
yValues2 = y(:,2); %V(t) solution
figure
plot(yValues1,yValues2)
xlabel('$V(t)$', 'Interpreter','latex')
ylabel('$\frac{dV(t)}{dt}$', 'Interpreter','latex')
.
  4 comentarios
Jake Barlow
Jake Barlow el 25 de Dic. de 2021
Hi Star Strider, thank you very much for your comment. It is clearer now!
Star Strider
Star Strider el 25 de Dic. de 2021
My pleasure!

Iniciar sesión para comentar.


Paul
Paul el 25 de Dic. de 2021
I think there are a few mistakes in the code
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
vars = 
[OTV,S] = odeToVectorField([eq1,eq2]);
S
S = 
Note that S is ordered [V dV U dU], so that should be the ordering of the solution of ode45
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
% note the IC's are in the same order as S
ySol = ode45(M,interval,[0 1 0 1],odeset('MaxStep',0.0001,'InitialStep',0.0001));
tValues = linspace(interval(1),interval(2),10000);
yValues1 = deval(ySol,tValues,1); % V(t) solution
yValues2 = deval(ySol,tValues,2); % Vdot(t) solution
yValues3 = deval(ySol,tValues,3); % U(t) solution
yValues4 = deval(ySol,tValues,4); % Udot(t) solution
figure
plot(yValues3,yValues1) % plot U vs V
xlabel('U');ylabel('V')
An exact solution can be computed using dsolve()
sol = dsolve([eq1; eq2],[U(0)==0; V(0)==0; dU(0)==1; dV(0)==1])
sol = struct with fields:
V: sin(100*t)/100 - cos(100*t)/100 + 1/100 U: cos(100*t)/100 + sin(100*t)/100 - 1/100
Ufunc = matlabFunction(sol.U);
Vfunc = matlabFunction(sol.V);
plot(Ufunc(tValues),Vfunc(tValues))
xlabel('U');ylabel('V')
% compare numerical and exact solutions
figure
plot(tValues,yValues3-Ufunc(tValues),tValues,yValues1-Vfunc(tValues))
  1 comentario
Jake Barlow
Jake Barlow el 25 de Dic. de 2021
Hi Paul, thank you very much for your answer.

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by