Try this —
filename = 'https://www.mathworks.com/matlabcentral/answers/uploaded_files/844665/Draft3.txt';
T1 = readtable(filename, 'VariableNamingRule','preserve')
T1 = 401×2 table
Freq. V(n002)
______ ______________________________________________________
10 {'(-6.02060034191108e+000dB,-1.79999994078238e-002°)'}
10.233 {'(-6.02060036211185e+000dB,-1.84192732265253e-002°)'}
10.471 {'(-6.02060038326466e+000dB,-1.88483131850069e-002°)'}
10.715 {'(-6.02060040541437e+000dB,-1.92873467657410e-002°)'}
10.965 {'(-6.02060042860797e+000dB,-1.97366067499370e-002°)'}
11.22 {'(-6.02060045289464e+000dB,-2.01963313409642e-002°)'}
11.482 {'(-6.02060047832591e+000dB,-2.06667642906489e-002°)'}
11.749 {'(-6.02060050495572e+000dB,-2.11481550285142e-002°)'}
12.023 {'(-6.02060053284056e+000dB,-2.16407587940291e-002°)'}
12.303 {'(-6.02060056203956e+000dB,-2.21448367719392e-002°)'}
12.589 {'(-6.02060059261468e+000dB,-2.26606562307481e-002°)'}
12.882 {'(-6.02060062463075e+000dB,-2.31884906644261e-002°)'}
13.183 {'(-6.02060065815569e+000dB,-2.37286199374180e-002°)'}
13.49 {'(-6.02060069326061e+000dB,-2.42813304330296e-002°)'}
13.804 {'(-6.02060073001998e+000dB,-2.48469152052698e-002°)'}
14.125 {'(-6.02060076851176e+000dB,-2.54256741342303e-002°)'}
V2c = cellfun(@(x)sscanf(x, '(%fdB,%f°'), T1.('V(n002)'), 'Unif',0);
V2m = cell2mat(V2c')';
T2 = table('Size',[size(T1.('Freq.'),1) 3],'VariableTypes',{'double','double','double'}, 'VariableNames',{'FreqHz','MagndB','PhasDg'});
T2.FreqHz = T1.('Freq.');
T2.MagndB = V2m(:,1);
T2.PhasDg = V2m(:,2)
T2 = 401×3 table
FreqHz MagndB PhasDg
______ _______ _________
10 -6.0206 -0.018
10.233 -6.0206 -0.018419
10.471 -6.0206 -0.018848
10.715 -6.0206 -0.019287
10.965 -6.0206 -0.019737
11.22 -6.0206 -0.020196
11.482 -6.0206 -0.020667
11.749 -6.0206 -0.021148
12.023 -6.0206 -0.021641
12.303 -6.0206 -0.022145
12.589 -6.0206 -0.022661
12.882 -6.0206 -0.023188
13.183 -6.0206 -0.023729
13.49 -6.0206 -0.024281
13.804 -6.0206 -0.024847
14.125 -6.0206 -0.025426
Mag = db2mag(T2.MagndB);
Phs = deg2rad(T2.PhasDg);
Rsp = Mag.*exp(1j*Phs)
Rsp =
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0002i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0003i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0004i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0005i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0006i
0.5000 - 0.0007i
0.5000 - 0.0007i
0.5000 - 0.0007i
0.5000 - 0.0007i
0.5000 - 0.0007i
0.5000 - 0.0007i
0.5000 - 0.0008i
0.5000 - 0.0008i
0.5000 - 0.0008i
0.5000 - 0.0008i
0.5000 - 0.0008i
0.5000 - 0.0008i
0.5000 - 0.0009i
0.5000 - 0.0009i
0.5000 - 0.0009i
0.5000 - 0.0009i
0.5000 - 0.0009i
0.5000 - 0.0010i
0.5000 - 0.0010i
0.5000 - 0.0010i
0.5000 - 0.0010i
0.5000 - 0.0011i
0.5000 - 0.0011i
0.5000 - 0.0011i
0.5000 - 0.0011i
0.5000 - 0.0012i
0.5000 - 0.0012i
0.5000 - 0.0012i
0.5000 - 0.0012i
0.5000 - 0.0013i
0.5000 - 0.0013i
0.5000 - 0.0013i
0.5000 - 0.0014i
0.5000 - 0.0014i
0.5000 - 0.0014i
0.5000 - 0.0015i
0.5000 - 0.0015i
0.5000 - 0.0015i
0.5000 - 0.0016i
0.5000 - 0.0016i
0.5000 - 0.0016i
0.5000 - 0.0017i
0.5000 - 0.0017i
0.5000 - 0.0018i
0.5000 - 0.0018i
0.5000 - 0.0018i
0.5000 - 0.0019i
0.5000 - 0.0019i
0.5000 - 0.0020i
0.5000 - 0.0020i
0.5000 - 0.0021i
0.5000 - 0.0021i
0.5000 - 0.0022i
0.5000 - 0.0022i
0.5000 - 0.0023i
0.5000 - 0.0023i
0.5000 - 0.0024i
0.5000 - 0.0024i
0.5000 - 0.0025i
0.5000 - 0.0025i
0.5000 - 0.0026i
0.5000 - 0.0027i
0.5000 - 0.0027i
0.5000 - 0.0028i
0.5000 - 0.0029i
0.5000 - 0.0029i
0.5000 - 0.0030i
0.5000 - 0.0031i
0.5000 - 0.0031i
0.5000 - 0.0032i
0.5000 - 0.0033i
0.5000 - 0.0034i
0.5000 - 0.0034i
0.5000 - 0.0035i
0.5000 - 0.0036i
0.5000 - 0.0037i
0.5000 - 0.0038i
0.5000 - 0.0039i
0.5000 - 0.0039i
0.5000 - 0.0040i
0.5000 - 0.0041i
0.5000 - 0.0042i
0.5000 - 0.0043i
0.5000 - 0.0044i
0.5000 - 0.0045i
0.5000 - 0.0046i
0.5000 - 0.0047i
0.5000 - 0.0049i
0.5000 - 0.0050i
0.4999 - 0.0051i
0.4999 - 0.0052i
0.4999 - 0.0053i
0.4999 - 0.0054i
0.4999 - 0.0056i
0.4999 - 0.0057i
0.4999 - 0.0058i
0.4999 - 0.0060i
0.4999 - 0.0061i
0.4999 - 0.0063i
0.4999 - 0.0064i
0.4999 - 0.0065i
0.4999 - 0.0067i
0.4999 - 0.0069i
0.4999 - 0.0070i
0.4999 - 0.0072i
0.4999 - 0.0073i
0.4999 - 0.0075i
0.4999 - 0.0077i
0.4999 - 0.0079i
0.4999 - 0.0081i
0.4999 - 0.0082i
0.4999 - 0.0084i
0.4999 - 0.0086i
0.4998 - 0.0088i
0.4998 - 0.0090i
0.4998 - 0.0092i
0.4998 - 0.0095i
0.4998 - 0.0097i
0.4998 - 0.0099i
0.4998 - 0.0101i
0.4998 - 0.0104i
0.4998 - 0.0106i
0.4998 - 0.0109i
0.4998 - 0.0111i
0.4997 - 0.0114i
0.4997 - 0.0116i
0.4997 - 0.0119i
0.4997 - 0.0122i
0.4997 - 0.0125i
0.4997 - 0.0128i
0.4997 - 0.0131i
0.4996 - 0.0134i
0.4996 - 0.0137i
0.4996 - 0.0140i
0.4996 - 0.0143i
0.4996 - 0.0146i
0.4996 - 0.0150i
0.4995 - 0.0153i
0.4995 - 0.0157i
0.4995 - 0.0161i
0.4995 - 0.0164i
0.4994 - 0.0168i
0.4994 - 0.0172i
0.4994 - 0.0176i
0.4994 - 0.0180i
0.4993 - 0.0184i
0.4993 - 0.0189i
0.4993 - 0.0193i
0.4992 - 0.0197i
0.4992 - 0.0202i
0.4991 - 0.0207i
0.4991 - 0.0212i
0.4991 - 0.0216i
0.4990 - 0.0221i
0.4990 - 0.0227i
0.4989 - 0.0232i
0.4989 - 0.0237i
0.4988 - 0.0243i
0.4988 - 0.0248i
0.4987 - 0.0254i
0.4986 - 0.0260i
0.4986 - 0.0266i
0.4985 - 0.0272i
0.4984 - 0.0278i
0.4984 - 0.0285i
0.4983 - 0.0291i
0.4982 - 0.0298i
0.4981 - 0.0305i
0.4980 - 0.0312i
0.4980 - 0.0319i
0.4979 - 0.0327i
0.4978 - 0.0334i
0.4976 - 0.0342i
0.4975 - 0.0350i
0.4974 - 0.0358i
0.4973 - 0.0366i
0.4972 - 0.0375i
0.4970 - 0.0383i
0.4969 - 0.0392i
0.4968 - 0.0401i
0.4966 - 0.0410i
0.4965 - 0.0420i
0.4963 - 0.0429i
0.4961 - 0.0439i
0.4959 - 0.0449i
0.4957 - 0.0460i
0.4955 - 0.0470i
0.4953 - 0.0481i
0.4951 - 0.0492i
0.4949 - 0.0503i
0.4946 - 0.0515i
0.4944 - 0.0526i
0.4941 - 0.0538i
0.4939 - 0.0550i
0.4936 - 0.0563i
0.4933 - 0.0576i
0.4930 - 0.0589i
0.4926 - 0.0602i
0.4923 - 0.0616i
0.4919 - 0.0630i
0.4916 - 0.0644i
0.4912 - 0.0658i
0.4908 - 0.0673i
0.4903 - 0.0688i
0.4899 - 0.0703i
0.4894 - 0.0719i
0.4889 - 0.0735i
0.4884 - 0.0752i
0.4879 - 0.0768i
0.4873 - 0.0785i
0.4868 - 0.0803i
0.4862 - 0.0820i
0.4855 - 0.0838i
0.4849 - 0.0857i
0.4842 - 0.0875i
0.4835 - 0.0894i
0.4827 - 0.0914i
0.4819 - 0.0934i
0.4811 - 0.0954i
0.4802 - 0.0974i
0.4793 - 0.0995i
0.4784 - 0.1016i
0.4774 - 0.1038i
0.4764 - 0.1060i
0.4754 - 0.1082i
0.4743 - 0.1105i
0.4731 - 0.1128i
0.4719 - 0.1151i
0.4707 - 0.1175i
0.4694 - 0.1199i
0.4680 - 0.1223i
0.4666 - 0.1248i
0.4652 - 0.1273i
0.4637 - 0.1298i
0.4621 - 0.1324i
0.4604 - 0.1350i
0.4587 - 0.1376i
0.4569 - 0.1403i
0.4551 - 0.1430i
0.4532 - 0.1457i
0.4512 - 0.1484i
0.4491 - 0.1512i
0.4470 - 0.1540i
0.4447 - 0.1568i
0.4424 - 0.1596i
0.4400 - 0.1624i
0.4376 - 0.1653i
0.4350 - 0.1681i
0.4324 - 0.1710i
0.4296 - 0.1739i
0.4268 - 0.1768i
0.4239 - 0.1796i
0.4209 - 0.1825i
0.4177 - 0.1854i
0.4145 - 0.1882i
0.4112 - 0.1911i
0.4078 - 0.1939i
0.4043 - 0.1967i
0.4007 - 0.1995i
0.3970 - 0.2022i
0.3931 - 0.2050i
0.3892 - 0.2077i
0.3852 - 0.2103i
0.3811 - 0.2129i
0.3768 - 0.2154i
0.3725 - 0.2179i
0.3681 - 0.2203i
0.3636 - 0.2227i
0.3590 - 0.2250i
0.3542 - 0.2272i
0.3494 - 0.2294i
0.3446 - 0.2314i
0.3396 - 0.2334i
0.3345 - 0.2353i
0.3294 - 0.2371i
0.3242 - 0.2387i
0.3189 - 0.2403i
0.3135 - 0.2418i
0.3081 - 0.2431i
0.3026 - 0.2444i
0.2971 - 0.2455i
0.2915 - 0.2465i
0.2859 - 0.2474i
0.2803 - 0.2482i
0.2746 - 0.2488i
0.2689 - 0.2493i
0.2631 - 0.2497i
0.2574 - 0.2499i
0.2516 - 0.2500i
0.2459 - 0.2500i
0.2401 - 0.2498i
0.2344 - 0.2495i
0.2287 - 0.2491i
0.2230 - 0.2485i
0.2173 - 0.2479i
0.2117 - 0.2470i
0.2061 - 0.2461i
0.2005 - 0.2450i
0.1950 - 0.2439i
0.1895 - 0.2426i
0.1842 - 0.2412i
0.1788 - 0.2397i
0.1736 - 0.2380i
0.1684 - 0.2363i
0.1633 - 0.2345i
0.1583 - 0.2326i
0.1533 - 0.2306i
0.1485 - 0.2285i
0.1437 - 0.2263i
0.1390 - 0.2240i
0.1345 - 0.2217i
0.1300 - 0.2193i
0.1256 - 0.2169i
0.1213 - 0.2143i
0.1171 - 0.2118i
0.1131 - 0.2092i
0.1091 - 0.2065i
0.1052 - 0.2038i
0.1014 - 0.2011i
0.0978 - 0.1983i
0.0942 - 0.1955i
0.0907 - 0.1927i
0.0874 - 0.1899i
0.0841 - 0.1870i
0.0809 - 0.1841i
0.0778 - 0.1813i
0.0749 - 0.1784i
0.0720 - 0.1755i
0.0692 - 0.1726i
0.0665 - 0.1698i
0.0639 - 0.1669i
0.0614 - 0.1640i
0.0589 - 0.1612i
0.0566 - 0.1584i
0.0543 - 0.1556i
0.0521 - 0.1528i
0.0500 - 0.1500i
0.0480 - 0.1472i
0.0460 - 0.1445i
Sizes = [size(T2.FreqHz); size(Rsp)]
Sizes = 2×2
401 1
401 1
sysfr = idfrd(Rsp,T2.FreqHz,0,'FrequencyUnit','Hz') % Create System Response Data Object
sysfr =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s).
Response data is available at 401 frequency points, ranging from 10 Hz to 1e+05 Hz.
Status:
Created by direct construction or transformation. Not estimated.
sys_ss = ssest(sysfr, 1) % State Space Realisation
sys_ss =
Continuous-time identified state-space model:
dx/dt = A x(t) + B u(t) + K e(t)
y(t) = C x(t) + D u(t) + e(t)
A =
x1
x1 -2e+05
B =
u1
x1 256
C =
x1
y1 390.6
D =
u1
y1 0
K =
y1
x1 0
Parameterization:
FREE form (all coefficients in A, B, C free).
Feedthrough: none
Disturbance component: none
Number of free coefficients: 3
Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using SSEST on frequency response data "sysfr".
Fit to estimation data: 100%
FPE: 1.13e-31, MSE: 1.119e-31
figure
compare(sysfr, sys_ss)
sys_tf = tfest(sysfr, 1,1) % Transfer Function Realisation
sys_tf =
1e05
--------
s + 2e05
Continuous-time identified transfer function.
Parameterization:
Number of poles: 1 Number of zeros: 1
Number of free coefficients: 3
Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using TFEST on frequency response data "sysfr".
Fit to estimation data: 100%
FPE: 1.58e-30, MSE: 1.557e-30
figure
compare(sysfr, sys_tf)
figure
pzmap(sys_ss)
grid on
format long E
Poles = pole(sys_ss)
Poles =
-2.000000000000001e+05
Zeros = zero(sys_ss)
Zeros =
0×1 empty double column vector
figure
subplot(2,1,1)
semilogx(T2.FreqHz, mag2db(abs(Rsp))) % Changed
title('Amplitude (dB)')
grid
subplot(2,1,2)
semilogx(T2.FreqHz, angle(Rsp)) % Changed
title('Phase (°)')
grid
xlabel('Frequency')
syms s
H = (s + 1e05 ) / (s + 200000)
H =
G = H*100/(1 - H)
G =
G = simplifyFraction(G)
G =
GdB = vpa(20*log10(abs(G)))
GdB =
figure
hfp = fplot(G, [0 1E+5]);
Xv = hfp.XData
Xv = 1×45
1.0e+00 *
0 2.085524378664551e+03 4.545454545454545e+03 6.924930780053428e+03 9.090909090909090e+03 1.132082961640785e+04 1.363636363636364e+04 1.614407746540481e+04 1.818181818181818e+04 2.071481972960689e+04 2.272727272727273e+04 2.491983619176126e+04 2.727272727272727e+04 2.945752839701479e+04 3.181818181818182e+04 3.435343593193532e+04 3.636363636363636e+04 3.880114675676139e+04 4.090909090909091e+04 4.330127399050895e+04 4.545454545454546e+04 4.770619139409764e+04 5.000000000000000e+04 5.227332318762936e+04 5.454545454545454e+04 5.690852009058446e+04 5.909090909090909e+04 6.154579464415575e+04 6.363636363636364e+04 6.587009057391543e+04
Yv = hfp.YData
Yv = 1×45
1.000000000000000e+02 1.020855243786645e+02 1.045454545454545e+02 1.069249307800534e+02 1.090909090909091e+02 1.113208296164078e+02 1.136363636363636e+02 1.161440774654048e+02 1.181818181818182e+02 1.207148197296069e+02 1.227272727272727e+02 1.249198361917613e+02 1.272727272727273e+02 1.294575283970148e+02 1.318181818181818e+02 1.343534359319353e+02 1.363636363636364e+02 1.388011467567614e+02 1.409090909090909e+02 1.433012739905089e+02 1.454545454545455e+02 1.477061913940976e+02 1.500000000000000e+02 1.522733231876294e+02 1.545454545454546e+02 1.569085200905845e+02 1.590909090909091e+02 1.615457946441558e+02 1.636363636363636e+02 1.658700905739154e+02
grid
xlabel('Frequency (Hz)')
ylabel('Absolute Amplitude')
figure
semilogx(Xv, Yv, 'LineWidth',2)
grid
xlabel('Frequency (Hz)')
ylabel('Amplitude (dB)')
.