Help with odes and two different reactions

7 visualizaciones (últimos 30 días)
Tom Goodland
Tom Goodland el 14 de En. de 2022
Comentada: Torsten el 18 de En. de 2022
𝑑𝐶𝐴/𝑑𝑡 = 𝑟1𝐴 = −𝑘𝐴𝐶𝐴𝐶𝐵 ( 9 ) The first two have the same rate constant
𝑑𝐶𝐵/𝑑𝑡 = 𝑟1𝐵 = 𝑟1𝐴 = −𝑘𝐴𝐶𝐴𝐶𝐵 ( 10 )
d𝐶𝑆/𝑑𝑡 = 𝑟2𝑆 = −𝑘𝑆𝐶𝑆 ( 11 )
A + B → C + ½ D (gas)
S → 3 D (gas) + misc liquids and solids
These are the two reactions, do I have to do two seperate odes because of the different reactions (and rate constants)? Or is there a way to work out all the differentials in the same ode with initial concentrations known?
If any of my code is needed to answer the question let me know.
Thanks
  1 comentario
Torsten
Torsten el 14 de En. de 2022
Look at the second example (Solve Stiff ODE) to see how you can solve all three ODEs in one call to the integrator.

Iniciar sesión para comentar.

Respuestas (1)

HWIK
HWIK el 14 de En. de 2022
Just write a function for the ODEs and feed it to the solver:
function out = name_your_function(tspan, inputs)
%Get your inputs and assign them to variables:
%(keep the same order as in your initial conditions!)
ca = inputs(1);
cb = inputs(2);
cs = inputs(3);
%Define your relationships:
%choose your values of k1 & k2:
k1 = ;
k2 = ;
%Reaction rates:
r1 = k1*ca*cb;
r2 = k2*cs;
%Define your ODEs:
dca = -r1;
dcb = -r1;
dcs = -r2;
%Assign your ourput:
out = [dca; dcb; dcs];
end
Solve over a given time span and for whatever initial conditions you have, using whatever solver seems to suit your system best.
  33 comentarios
Tom Goodland
Tom Goodland el 17 de En. de 2022
I am thinking some type of loop would be best for this challenge but I'm not sure what, does anyone know what loop code would be best for the problem I described in the 2 previous comments on this thread?
Thanks
Torsten
Torsten el 18 de En. de 2022
You mean something like this ?
function main
tspan = [0 10]; %just as an example
initial_conditions = [4.3 5.1 3 0 4.4 422]; %its the values of the variables you are solving for at t=0
%there must be as many inputs to the initial conditions as variables solved
%Solve your ODE function (I picked ode45 in this case,could be another):
Tstop_left = 450.0;
Tstop_right = 495.0;
Tstop = (Tstop_left + Tstop_right)/2.0;
while Tstop_right - Tstop_left >= 0.1
options = odeset('RelTol',1e-8,'AbsTol',1e-8,'Events',@(t,y)myEventsFcn(t,y,Tstop));
iflag = 1;
[t1,y1,te,ye,ie] = ode15s(@(t,y)fun(t,y(1),y(2),y(3),y(4),y(5),y(6),iflag), tspan, initial_conditions,options);
iflag = 2;
options = odeset('RelTol',1e-8,'AbsTol',1e-8,'InitialStep',1e-8);
[t2,y2] = ode15s(@(t,y)fun(t,y(1),y(2),y(3),y(4),y(5),y(6),iflag), [te tspan(end)], ye, options);
Tmax = max(y2(:,6))
if Tmax > 500
Tstop_left = Tstop_left;
Tstop_right = Tstop;
Tstop = (Tstop_left + Tstop_right)/2;
else
Tstop_left = Tstop;
Tstop_right = Tstop_right;
Tstop = (Tstop_left + Tstop_right)/2;
end
end
Tstop
t = [t1;te;t2];
y = [y1;ye;y2];
%output t is your time range, and y an array with all your variables where:
ca = y(:,1);
cb = y(:,2);
cs = y(:,3);
cd = y(:,4);
P = y(:,5);
T_2 = y(:,6);
figure(1)
plot(t,[ca,cb,cs,cd])
figure(2)
plot(t,P)
figure(3)
plot(t,T_2)
end
function [value,isterminal,direction] = myEventsFcn(t,y,Tstop)
value = y(6) - Tstop; % The value that we want to be zero
isterminal = 1; % Halt integration
direction = 0; % The zero can be approached from either direction
end
function out = fun(tspan,ca,cb,cs,cd,P,T_2,iflag)
%Get your inputs and assign them to variables:
%(keep the same order as in your initial conditions!)
%Define your relationships:
k_0_1 = 4E14;
k_0_2 = 1E84;
Ea1 = 128000;
Ea2 = 800000;
R_gas = 8.314;
V0 = 4000;% L
VH = 5000;
Cv1 = 3360; % mol / h * atm
Cv2 = 53600; % mol / h * atm
Hr1 = -45400; % J / mol
Hr2 = -3.2E5;
Ta = 373;
if iflag == 1
UA = 0;
elseif iflag == 2
UA = 2.77E6;
end
NCp = 1.26E7; % J / K
%choose your values of k1 & k2:
k1 = k_0_1*exp(-Ea1/(R_gas*T_2));
k2 = k_0_2*exp(-Ea2/(R_gas*T_2));
%Reaction rates:
r1 = k1*ca*cb;
r2 = k2*cs;
%Fd
Fd = (-0.5*r1-3*r2)*V0;
%
if Fd < 11.4 % mol / h
Fvent = Fd;
else
if P < 28.2 % atm
Fvent = (P - 1)*Cv1;
else
Fvent = (P - 1)*(Cv1 + Cv2);
end
end
%Define your ODEs:
dca = -r1;
dcb = -r1;
dcs = -r2;
dcd = r1/2 + 3*r2;
dp = (Fd - Fvent)*((R_gas*T_2)/VH);
dT = (V0*(r1*-Hr1 + r2*-Hr2) - UA*(T_2 - Ta))/NCp;
%Assign your ourput:
out = [dca; dcb; dcs; dcd;dp;dT];
end

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by