About coding for optimal no of cluster

2 visualizaciones (últimos 30 días)
Seemant Tiwari
Seemant Tiwari el 4 de Feb. de 2022
Respondida: Paras Gupta el 17 de Nov. de 2023
hi all
i create 5 cluster(By Fuzzy C Means)
now i am moving for next step, my next step is choosing optimal no. of cluster.
i am choosing silhouette method for optimal no. of cluster
i want help about coding for silhouette method, if anyone known please help me
Thank you

Respuesta aceptada

Paras Gupta
Paras Gupta el 17 de Nov. de 2023
Hi Seemant,
I understand that you want to find the optimal number of clusters using the Silhouette Method with Fuzzy c-means as the clustering function.
You can refer the code below to achieve the same in MATLAB.
% Generate dummy data
data = [randn(100,2)+2; randn(100,2)-2];
% Set the range of cluster numbers to evaluate
minClusters = 2;
maxClusters = 10;
% Initialize variables to store optimal number of clusters and maximum silhouette score
optimalNumClusters = 0;
maxSilhouetteScore = -Inf;
% Perform fuzzy c-means clustering for different numbers of clusters
for k = minClusters:maxClusters
options = fcmOptions(NumClusters=2,Verbose=false);
[centers, U] = fcm(data, options);
% Calculate the fuzzy membership values
[~, labels] = max(U);
% Calculate the silhouette values for each data point
silhouetteValues = silhouette(data, labels);
% Calculate the average silhouette score
avgSilhouetteScore = mean(silhouetteValues);
% Update the optimal number of clusters if a higher silhouette score is found
if avgSilhouetteScore > maxSilhouetteScore
maxSilhouetteScore = avgSilhouetteScore;
optimalNumClusters = k;
end
end
% Display the optimal number of clusters
disp("Optimal number of clusters = " + optimalNumClusters);
Optimal number of clusters = 2
Please find below the documentation links of the functions used in the code:
You can also refer to the following documentation on "Silhouette criterion clustering evaluation object" to use the silhouette method with other clustering functions.
Hope this helps.

Más respuestas (0)

Categorías

Más información sobre Data Clustering en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by