Optimise a reference that cuts my curve into 2 equal sections
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
fadi awar
el 12 de Feb. de 2022
Hello,
I am collecting data from excel, then basic idea is that i want to determine a constant value line that cuts my curve into 2 eqaual sections (area above the line and the curve = area under).
The objective is to determine the value of the red line.
0 comentarios
Respuesta aceptada
Matt J
el 12 de Feb. de 2022
Editada: Matt J
el 12 de Feb. de 2022
%t= time, X=consumption, x=unknown midline
tc=t-t(1);
Xc=cumtrapz(t,X);
x=optimvar('x');
sol=solve( optimproblem('Objective',x,'Constraints',Xc-x*tc<=90,'ObjectiveSense','minimize') );
lb=sol.x; %lower bound
sol=solve( optimproblem('Objective',x,'Constraints',10<=Xc-x*tc,'ObjectiveSense','maximize') );
ub=sol.x; %upper bound
if lb>ub
disp 'Problem is infeasible'
else
xunc=trapz(t,X)/(t(end)-t(1)); %unconstrained solution
x=min(max(xunc,lb),ub); %constrained solution
end
3 comentarios
Más respuestas (2)
William Rose
el 12 de Feb. de 2022
If you mean that the area between the red line and the blue curve abve the line equals the area between the red line and the blue curve below the line, then the height of the red line is simply the mean value of the blue line data.
5 comentarios
dpb
el 12 de Feb. de 2022
Attach the data as a .mat file.
Just looking at the graph, I'd venture it isn't possible to meet the constraints that the integral of the area be <95 when the magnitudes of the integrand are in the thousands. Just by a very crude approximation of the leftmost area (brown?) as roughly a rectangle of height ~(2800-1800) and a duration of 12, the integral would be roughly 1000*12 --> 12,000. Unless there's a very small scaling factor to be applied, it "just ain't a-gonna' happen".
Ver también
Categorías
Más información sobre Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!