speed up finding common values in multiple matrices
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have three same-sized matrices (approx. 2000x2000). I am iteratively evaluating these matrices thousands of times and desperately need to speed up the processing. Here's what I'm trying to do:
A is a logical matrix
B contains integer values
C is a logical matrix
For a given value z, I need to find where B==z and A==1, and change these locations in C to ones, or:
C(B==z & A == 1) = 1;
Any ideas on speeding up would be fantastic. I'm not seeing how. Many thanks in advance.
1 comentario
Fangjun Jiang
el 23 de Sept. de 2011
Do you mean you currently use C(B==z & A == 1) = 1; and it's not fast enough?
Respuesta aceptada
Walter Roberson
el 23 de Sept. de 2011
How "dense" is A? If there are relatively few locations set in A compared to the size of A, then
locs = find(A);
C(locs(B(locs)==z)) = true;
Note that if A is not changing, then you only need to compute locs once before you start the iterations.
3 comentarios
Walter Roberson
el 23 de Sept. de 2011
Darn, so much for that idea.
Okay... there is a possibility that this would be faster than what you have (but I suspect not):
C = (B == Z & A == 1) | C;
Ah, and of course I should have asked about the density of B==Z, as the find() can be switched around:
locs = find(B==z);
C(locs(A(locs))) = true;
Más respuestas (2)
Fangjun Jiang
el 23 de Sept. de 2011
If A is a logical matrix, A==1 is not needed. If C is a logical matrix, use true/false at the right hand side.
C(B==z & A) = true;
I wonder if this will help.
4 comentarios
Fangjun Jiang
el 23 de Sept. de 2011
And I switched the order of approach 1 and 2 inside the for-loop, the result is the same.
Derek O'Connor
el 24 de Sept. de 2011
Here are some tests on loopy alternatives to vectorized functions.
%-----------------------------------
function [z,A,B,C] = GenDat(m,n)
%
% Derek O'Connor 24 Sep 2011
%
B = ceil(m*n*rand(m,n)); % B is integer
A = round(rand(m,n)) == 1; % A & C are logical
C = A;
z = m*n*rand;
% -------- end GenDat ---------
%-------------------------------------------------------
function C = UpDate0(z,A,B)
[m,n] = size(A);
C(1:m,1:n) = false;
C(B==z & A == 1) = true; % = 1 slows this operation
%
%-----------------------------------------
function C = UpDateDOC1(z,A,B)
[m,n] = size(A);
A = A(:);
C(1:m,1:n) = false;
for i = 1:m
for j = 1:n
if B(i,j) == z
if A(i,j)
C(i,j) = true;
end
end % endif B
end % endfor j
end % endfor i
%-----------------------------------------
function C = UpdateDOC2(z,A,B)
[m,n] = size(A);
C(1:m,1:n) = false;
A = A(:);
B = B(:);
C = C(:);
for k = 1:m*n
if B(k) == z
if A(k)
C(k) = true;
end
end % endif B
end % endfor k
%-----------------------------------------
function C = UpdateWal1(z,A,B)
% Walter Roberson's function.
%
locs = find(A);
C(locs(B(locs)==z)) = true;
%-----------------------------------------
function C = UpDateWal2(z,A,B)
locs = find(B==z);
C(locs(A(locs))) = true;
%---------------------------------------------------------
Timing tests for n = [500 1000 2000 3000], run 10 times gave these normalized average times
Normalized Average Times
n UpDate0 UpDateDOC1 UpDateDOC2 UpDateWal1
-------------------------------------------------------
500 1.17 1 1.03 1.94
1000 1.15 1.14 1 2.35
2000 1.09 1.14 1 2.23
3000 1.14 1.14 1 2.32
-------------------------------------------------------
Actual(secs)3000 0.16 0.17 0.14 0.33
R2008a 64-bit, Windows 7, 2.33GHz
These results are for random A,B,z but I suspect these times will depend very much on the actual inputs.
As you can see, not much of a speed-up. Given that the matrices are dense and there is no pattern to the updates, it's hard for me to see how this operation can be speeded up.
Perhaps if you accumulated a vector of z values and did a single update for the vector then this should give a speed-up. But "batching" the z values may not be possible.
UPDATE 1
I overlooked Walter's second method, which is remarkably fast
Normalized Average Times
n UpDate0 UpDateDOC1 UpDateDOC2 UpDateWal1 UpDateWal2
------------------------------------------------------------
500 4.27 3.64 3.81 6.86 1
1000 3.31 3.16 2.71 7.09 1
2000 3.39 3.42 2.96 7.00 1
3000 3.34 3.43 2.87 6.83 1
------------------------------------------------------------
Actual(secs) 3000 0.17 0.17 0.14 0.34 0.05
This shows that vectorization can give great speed-ups, if you choose the right one.
UPDATE 2
This table shows the dramatic effect the JIT accelerator has on loopy functions
Times(Acc off)/Times(Acc on)
n UD0 DOC1 DOC2 Wal1 Wal2
--------------------------------------------
500 1.3 45.4 38.6 1.2 1.0
1000 1.6 41.1 40.5 1.0 1.1
2000 1.6 39.2 39.4 1.0 1.1
3000 1.6 38.4 38.9 1.0 1.0
--------------------------------------------
R2008a 64-bit, Windows 7, 2.33GHz
3 comentarios
Derek O'Connor
el 25 de Sept. de 2011
Walter,
It would be useful if you would explain why your two methods have a 7:1 speed ratio. Both use Matlab's find() function, so perhaps a brief explanation of how it works in this would be helpful also.
Walter Roberson
el 25 de Sept. de 2011
In theory, it depends entirely on the density of matches. The lower the number of matches, the smaller the result of find() and the fewer locations that need to be checked for the following comparison.
In practice, for the same density, one would expect the first variant, checking logical matrix (A) first, would be faster, as one would expect the comparison step followed by logical indexing by the result of the comparison, to be slower than plain logical indexing. Of course, expectations should be put to the timing test...
Ver también
Categorías
Más información sobre Logical en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!