How do I integrate this multivariable function over just one variable?

13 visualizaciones (últimos 30 días)
How do you do you do the following like . (My actual function is more complicated, but this should suffice, I think.) Here, t, r, and x are all variables, with x just being used for purposes of the integration.
I tried something like
a = 0;
b = 2;
for t = 1:10
sum = 0;
for r = 1:10
f = @(x) sin(r*t*x.).^2;
sum = sum + f;
end
0.5*integral(sum,a,b)
end
But I can't add the function handle and am not sure if the procedure is even correct. How do I do this? For every t there should be many r.

Respuesta aceptada

Walter Roberson
Walter Roberson el 8 de Mzo. de 2022
Well, you can
a = 0;
b = 2;
for t = 1:10
sum = @(x) zeros(size(x));
for r = 1:10
f = @(x) sin(r*t*x).^2;
sum = @(x) sum(x) + f(x);
end
0.5*integral(sum,a,b)
end
ans = 5.0512
ans = 4.9580
ans = 5.0476
ans = 5.0045
ans = 4.9769
ans = 5.0196
ans = 4.9978
ans = 4.9824
ans = 5.0096
ans = 4.9951
This is not a great integral; t and r should be finer steps, and you should be taking into account dt and dr and you should probably be using trapz() or cumtrapz()
If you can use symbolic work it goes much easier:
syms r t x
a = 0;
b = 2;
F(t) = int(sin(r*t*x).^2, x, a, b)
F(t) = 
To be equivalent to your proposed code this should probably be integrated over r = 1 to 10
syms r t x
a = 0;
b = 2;
F(t) = int(int(sin(r*t*x).^2, x, a, b),r,1,10)
F(t) = 
fplot(F, [1 10])
  2 comentarios
L'O.G.
L'O.G. el 8 de Mzo. de 2022
Thank you. Is there a cleaner way to do this using trapz or cumtrapz, like you alluded to?
Walter Roberson
Walter Roberson el 8 de Mzo. de 2022
Evaluate the function over a (possibly multidimensional) grid, trapz() or cumtrapz() over appropriate dimensions.
This would mostly be of use if you wanted to be able to output that data separately; otherwise you would just use integral() or integral2() or integral3() or https://www.mathworks.com/matlabcentral/fileexchange/47919-integraln-m

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by