How to train Network Using Custom Training Loop for Semantic segmentation?

1 visualización (últimos 30 días)
Hi, because I want to use two outputs for Semantic segmentation, so I have to train network using custom training loop. My question is how to achieve this?

Respuestas (1)

Aneela
Aneela el 13 de Sept. de 2024
Hi zhou,
Training a neural network with two outputs for semantic segmentation using a custom training loop involves the following key steps:
  • Define a network architecture that has two outputs. Here’s a sample network architecture with two output layers.
layers = [
imageInputLayer([256 256 3],'Name','input')
convolution2dLayer(3,64,'Padding','same','Name','conv1')
reluLayer('Name','relu1')
%numClasses1, numClasses2-Replace them with the number of classes in your datasets
convolution2dLayer(1, numClasses1, 'Name', 'convOut1')
softmaxLayer('Name','softmax1')
pixelClassificationLayer('Name','output1')
convolution2dLayer(1, numClasses2, 'Name', 'convOut2')
softmaxLayer('Name','softmax2')
pixelClassificationLayer('Name','output2')];
Hope this helps!

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by