Making a moving average filter without looking in to the future. So forecasting the data, how do you do it?
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
M = 11
% 4. Moving average filter
for n = 1:M
yma(n) = average(y([1:n+M-1]));
end
for n = M+1:length(t)-M
yma(n) = average(y([n-M:n+M]));
end
for n = length(t)-M+1:length(t)
yma(n) = average(y([n-M:length(t)]));
end
yma = yma';
3 comentarios
Mathieu NOE
el 12 de Abr. de 2022
sorry ; it's late here and I must be tired ,
I don't understand the question 24
Respuestas (1)
Steven Lord
el 12 de Abr. de 2022
Editada: Steven Lord
el 12 de Abr. de 2022
Use the movmean function with the M = movmean(A, [kb kf]) syntax given on its documentation page. Choose kf = 0 to include 0 elements forward of the current element.
x = randi(10, 1, 5)
M = movmean(x, [1 0])
N = 4;
check = (x(N-1)+x(N))/2 - M(N)
Note that the expression for check (the moving mean for element 4) does not include x(5), so the moving mean computation didn't "look into the future".
Ver también
Categorías
Más información sobre Digital Filter Analysis en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!