10 fold cross validation
    11 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
how to use 10 fold cross validation in Multilayer extreme learning machine
0 comentarios
Respuesta aceptada
  Demet
      
 el 19 de Abr. de 2022
        
      Editada: Demet
      
 el 19 de Abr. de 2022
  
      Hello,
I have never used Multilayer extreme learning machine but i found this. The code below was written assuming that the code in this link is correct and It would be helpful for you
data= dlmread('data\\inputs1.txt'); %inputs
groups=dlmread('data\\targets1.txt'); % target
Fold=10;
indices = crossvalind('Kfold',length(groups),Fold);
for i =1:Fold
    testy = (indices == i);   
    trainy = (~testy);   
    TestInputData=data(testy,:)'; 
    TrainInputData=data(trainy,:)';
    TestOutputData=groups(testy,:)'; 
    TrainOutputData=groups(trainy,:)';
    number_neurons=[1000 100 100 100];% acchetecture of network
    NL=4;
    ELM_Type=1;
    [training_Acuracy]=MLP_elm_train(TrainInputData,TrainOutputData,number_neurons,ELM_Type,NL);%training
    training_Acuracy_f(fold)=training_Acuracy; %keep training acc for each fold
    [testing_Accuracy,output]=MLP_elm_predict(TestInputData, TestOutputData,ELM_Type,NL);%testing
    testing_Accuracy_f(Fold)=testing_Accuracy;% keep testing acc for each fold
end
Más respuestas (1)
Ver también
Categorías
				Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

