The fsolve function fails to give me an answer for seven unknowns. What should I do?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
x0=[1;1;1;1;1;1;1];
x=fsolve(@nle,x0)
function f=nle(x)
f(1)= x(2)+x(3)+x(5)+x(7)+1587.8938-2800;
f(2)= 2*x(1) + 2*x(4) + 4*x(5)+1817.9113-4400-48.14;
f(3)= x(2) +2*x(3)+x(4)+585.4646-1600+24.07+19.94;
f(4)=2*x(6)+1573.649-100-74.9744;
f(5)=((x(1)^3)*(x(2))/(x(4)*x(5)))-(5.2234*10^33);
f(6)=(x(1)*x(3))/(x(2)*x(4))-(4.6061*10^10);
f(7)=((x(1)*x(2))/x(4))-(4.1158*10^32);
end
1 comentario
Matt J
el 19 de Abr. de 2022
Editada: Matt J
el 19 de Abr. de 2022
It's possible there is no solution. Why do you think there should be?
If there is a solution, however, several x(i) would have to be on the order of 10^10, judging from equations 5 through 7. It is not good to formulate optimization problems with variables of such large magnitude. I suggest you reconsider the units in which you have chosen to measure the x(i).
Respuestas (2)
Walter Roberson
el 19 de Abr. de 2022
Editada: Walter Roberson
el 19 de Abr. de 2022
There are mathematical solutions, but double precision cannot reach those solutions.
Notice with digits(50) that the 5th output value (you will need to scroll) is about 1E-05. With the default digits(32) the value is about 1E+15 or so -- even 32 digits is not enough to resolve the system.
format long g
syms x [1 7]
eqns = nle(x)
digits(50)
sol = vpasolve(eqns)
X = subs(x, sol)
double(nle(X))
nle(double(X))
function f=nle(x)
f(1)= x(2)+x(3)+x(5)+x(7)+1587.8938-2800;
f(2)= 2*x(1) + 2*x(4) + 4*x(5)+1817.9113-4400-48.14;
f(3)= x(2) +2*x(3)+x(4)+585.4646-1600+24.07+19.94;
f(4)=2*x(6)+1573.649-100-74.9744;
f(5)=((x(1)^3)*(x(2))/(x(4)*x(5)))-(5.2234*10^33);
f(6)=(x(1)*x(3))/(x(2)*x(4))-(4.6061*10^10);
f(7)=((x(1)*x(2))/x(4))-(4.1158*10^32);
end
0 comentarios
Alex Sha
el 19 de Abr. de 2022
Just doing some equivalent deformation (change division into multiplication), for example,
form:
f(5)=((x(1)^3)*(x(2))/(x(4)*x(5)))-(5.2234*10^33);
f(6)=(x(1)*x(3))/(x(2)*x(4))-(4.6061*10^10);
f(7)=((x(1)*x(2))/x(4))-(4.1158*10^32);
to:
f(5)=(x(1)^3)*(x(2))-(x(4)*x(5))*(5.2234*10^33);
f(6)=(x(1)*x(3))-(x(2)*x(4))*(4.6061*10^10);
f(7)=(x(1)*x(2))-x(4)*(4.1158*10^32);
multi-solutions will be get:
1:
x1: 0
x2: 183.614772826468
x3: 393.455313586766
x4: 0
x5: 657.557175
x6: -699.3373
x7: -22.5210614132339
2:
x1: 0
x2: 185.160969290733
x3: 392.682215354633
x4: 0
x5: 657.557175
x6: -699.3373
x7: -23.294159645367
0 comentarios
Ver también
Categorías
Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!