Find intersections of curves
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you 
0 comentarios
Respuesta aceptada
  Matt J
      
      
 el 24 de Abr. de 2022
        
      Editada: Matt J
      
      
 el 24 de Abr. de 2022
  
      syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22)  ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])
0 comentarios
Más respuestas (2)
  Torsten
      
      
 el 24 de Abr. de 2022
        bL = 0 is the intersection point.
hold on
plot(0,0,'.')
2 comentarios
  Torsten
      
      
 el 24 de Abr. de 2022
				
      Editada: Torsten
      
      
 el 24 de Abr. de 2022
  
			  a = 8.0901e-5;
  fun1 = @(a,x) a*sinh(x);
  fun2 = @(a,x) sin(2*a*x);
  f=@(a,x)fun1(a,x)-fun2(a,x)
  x1 = fzero(@(x)f(a,x),[2,2.5])
  x2 = fzero(@(x)f(a,x),[-3,-2])
  x=-2.5:0.01:2.5;
  plot(x,fun1(a,x))
  hold on
  plot(x,fun2(a,x))
  hold on
  plot(x1,fun1(a,x1),'.')
  hold on
  plot(x2,fun1(a,x2),'.')
  hold on
  plot(0,0,'.')
  Sam Chak
      
      
 el 24 de Abr. de 2022
        
      Editada: Sam Chak
      
      
 el 24 de Abr. de 2022
  
      Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at  .
.
 .
.
0 comentarios
Ver también
Categorías
				Más información sobre Calculus en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





