Plotting differential equations using ODEs with multiple initial conditions, trying to recreate a plot

13 visualizaciones (últimos 30 días)
I'm very stuck and very new to ODEs. Trying to recreate the plot below and I'm not completely sure what I'm doing wrong. So far I only have the plot with the singular blue line that's labeled "untreated".
Attached are the equations given and parameters.
a = 4.3*10^-1; b = 2.17*10^-8; p = 2*10^2; g = 1*10^7;
m = 2*10^-2; q = 3.4*10^-10; r1 = 7.25*10^-15; r2 = 6.9*10^-15; r3L = 1.95*10^-12; r3C = 1.95*10^-12; k1 = 5*10^-7; j = 1.245*10^-2; k2 = 2.019*10^7;
Yinit = [1.5*10^7];
[t1a,y1a]=ode45(@TumorCells,[0 70],Yinit,[],a,b,p,g);
plot(t1a,9*y1a)
[t1b, y1b] = ode45(@TumorCells,[0 70],Yinit,[],m,q,r1,r2,r3L,r3C,k1,j,k2);
plot(t1b,9*y1b)
ylabel('Tumor (Cells)');
xlabel('Time(day)');
legend('untreated', 'CpG 1', 'CpG 2', 'CpG 3')
function dTdt = TumorCells(t,T,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2)
a = 4.3*10^-1; b = 2.17*10^-8; p = 2*10^2; g = 1*10^7;
m = 2*10^-2; q = 3.4*10^-10; r1 = 7.25*10^-15; r2 = 6.9*10^-15; r3L = 1.95*10^-12; r3C = 1.95*10^-12; k1 = 5*10^-7; j = 1.245*10^-2; k2 = 2.019*10^7;
E=1;Th1=1;Treg=1;DCC=1;DCL=1;
dTdt = a*T*(1-b*T)-[(p*E*T)/(g+T)];
dEdt = (-m*E) - (q*E*T) + (r1*Th1*E*T) - (r2*Treg*E*T) + (r3L*DCL+r3C*DCC)*[(E*T)/(1+k1*T)]+[j*(T*E)/(k2+T)];
y1a = [dTdt;dEdt];
y1b = [dTdt;dEdt];
end

Respuestas (1)

Davide Masiello
Davide Masiello el 2 de Mayo de 2022
Editada: Davide Masiello el 2 de Mayo de 2022
I could not run the code, because several constants are missing (e.g. alpha1,beta1 etc.)
The error in your code is that you have not written the entire system of ODEs.
Something like the code below should work when completed.
If you share all the necessary info, I could try to run it and see if it works.
clear,clc
% Constants
a = 4.3*10^-1;
b = 2.17*10^-8;
p = 2*10^2;
g = 1*10^7;
m = 2*10^-2;
q = 3.4*10^-10;
r1 = 7.25*10^-15;
r2 = 6.9*10^-15;
r3L = 1.95*10^-12;
r3C = 1.95*10^-12;
k1 = 5*10^-7;
j = 1.245*10^-2;
k2 = 2.019*10^7;
Yinit = ones(1,5)*1.5*10^7;
[t,y]=ode45(@(t,y)TumorCells(t,y,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2),[0 70],Yinit);
plot(t,y)
ylabel('Tumor (Cells)');
xlabel('Time(day)');
legend('untreated', 'CpG 1', 'CpG 2', 'CpG 3')
function dydt = TumorCells(t,y,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2)
T = y(1);
E = y(2);
Th1 = y(3);
Treg = y(4);
DCL = y(5);
dTdt = a*T*(1-b*T)-(p*E*T)/(g+T);
dEdt = -m*E-q*E*T+r1*Th1*E*T-r2*Treg*E*T+(r3L*DCL+r3C*DCC)*((E*T)/(1+k1*T))+j*(T*E)/(k2+T);
dThqdt = % expression
dTregdt = % expression
dDCLdt = % expression
end
  3 comentarios
Davide Masiello
Davide Masiello el 2 de Mayo de 2022
Still it is not clear what the functions v_DCC(t) and v_DCL(t) appearing in the last two ODEs are.
Madeleine Yee
Madeleine Yee el 2 de Mayo de 2022
I couldn't find any information about those functions... unless I didn't look hard enouigh :/ article with the information: https://iji.sums.ac.ir/article_48257_93803012f585b515b2ad0e32a601db7c.pdf

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by