Plotting differential equations using ODEs with multiple initial conditions, trying to recreate a plot
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I'm very stuck and very new to ODEs. Trying to recreate the plot below and I'm not completely sure what I'm doing wrong. So far I only have the plot with the singular blue line that's labeled "untreated".
Attached are the equations given and parameters.
Article Link with more information: https://iji.sums.ac.ir/article_48257_93803012f585b515b2ad0e32a601db7c.pdf
a = 4.3*10^-1; b = 2.17*10^-8; p = 2*10^2; g = 1*10^7;
m = 2*10^-2; q = 3.4*10^-10; r1 = 7.25*10^-15; r2 = 6.9*10^-15; r3L = 1.95*10^-12; r3C = 1.95*10^-12; k1 = 5*10^-7; j = 1.245*10^-2; k2 = 2.019*10^7;
Yinit = [1.5*10^7];
[t1a,y1a]=ode45(@TumorCells,[0 70],Yinit,[],a,b,p,g);
plot(t1a,9*y1a)
[t1b, y1b] = ode45(@TumorCells,[0 70],Yinit,[],m,q,r1,r2,r3L,r3C,k1,j,k2);
plot(t1b,9*y1b)
ylabel('Tumor (Cells)');
xlabel('Time(day)');
legend('untreated', 'CpG 1', 'CpG 2', 'CpG 3')
function dTdt = TumorCells(t,T,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2)
a = 4.3*10^-1; b = 2.17*10^-8; p = 2*10^2; g = 1*10^7;
m = 2*10^-2; q = 3.4*10^-10; r1 = 7.25*10^-15; r2 = 6.9*10^-15; r3L = 1.95*10^-12; r3C = 1.95*10^-12; k1 = 5*10^-7; j = 1.245*10^-2; k2 = 2.019*10^7;
E=1;Th1=1;Treg=1;DCC=1;DCL=1;
dTdt = a*T*(1-b*T)-[(p*E*T)/(g+T)];
dEdt = (-m*E) - (q*E*T) + (r1*Th1*E*T) - (r2*Treg*E*T) + (r3L*DCL+r3C*DCC)*[(E*T)/(1+k1*T)]+[j*(T*E)/(k2+T)];
y1a = [dTdt;dEdt];
y1b = [dTdt;dEdt];
end
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/985160/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/985165/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/985070/image.png)
0 comentarios
Respuestas (1)
Davide Masiello
el 2 de Mayo de 2022
Editada: Davide Masiello
el 2 de Mayo de 2022
I could not run the code, because several constants are missing (e.g. alpha1,beta1 etc.)
The error in your code is that you have not written the entire system of ODEs.
Something like the code below should work when completed.
If you share all the necessary info, I could try to run it and see if it works.
clear,clc
% Constants
a = 4.3*10^-1;
b = 2.17*10^-8;
p = 2*10^2;
g = 1*10^7;
m = 2*10^-2;
q = 3.4*10^-10;
r1 = 7.25*10^-15;
r2 = 6.9*10^-15;
r3L = 1.95*10^-12;
r3C = 1.95*10^-12;
k1 = 5*10^-7;
j = 1.245*10^-2;
k2 = 2.019*10^7;
Yinit = ones(1,5)*1.5*10^7;
[t,y]=ode45(@(t,y)TumorCells(t,y,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2),[0 70],Yinit);
plot(t,y)
ylabel('Tumor (Cells)');
xlabel('Time(day)');
legend('untreated', 'CpG 1', 'CpG 2', 'CpG 3')
function dydt = TumorCells(t,y,a,b,p,g,m,q,r1,r2,r3L,r3C,k1,j,k2)
T = y(1);
E = y(2);
Th1 = y(3);
Treg = y(4);
DCL = y(5);
dTdt = a*T*(1-b*T)-(p*E*T)/(g+T);
dEdt = -m*E-q*E*T+r1*Th1*E*T-r2*Treg*E*T+(r3L*DCL+r3C*DCC)*((E*T)/(1+k1*T))+j*(T*E)/(k2+T);
dThqdt = % expression
dTregdt = % expression
dDCLdt = % expression
end
3 comentarios
Davide Masiello
el 2 de Mayo de 2022
Still it is not clear what the functions v_DCC(t) and v_DCL(t) appearing in the last two ODEs are.
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!