Solve a numerical function

2 visualizaciones (últimos 30 días)
issam BEN SALAH
issam BEN SALAH el 26 de Mayo de 2022
Comentada: issam BEN SALAH el 30 de Mayo de 2022
I am trying to solve a numerical equation with three unkonown values Ge, G and t , thse values will be approximated by fitting the curve with the from equation (Gp) to the following data obtained.
This means that is possible to make a curve approximation in order to know the values of the G anf t terms, depending on the number of terms desired for the sum.
I would really appreciate if someone could help me please. Here is the code and the data:
clear all, close all
data1=[0.010931641 0.011369615 0.012298683];
data2=[691.5802655 719.3455778 778.7159258];
Gp=data2(1); wp=data1(1);
for i=1:11
Gp=Ge+(G(i)*wp^2*t(i)^2)/(1+wp^2*t(i)^2)
end
  3 comentarios
Walter Roberson
Walter Roberson el 27 de Mayo de 2022
It is a curve fitting problem. You can solve for three variables if you have 3 or more points, each of which generates an implicit equation.
issam BEN SALAH
issam BEN SALAH el 27 de Mayo de 2022
I already have an experimental curve, Gp as a function of w of which I tried to determine these variables by fitting it with this equation.
How can I solve this problem of fitting curve.

Iniciar sesión para comentar.

Respuestas (1)

Sam Chak
Sam Chak el 28 de Mayo de 2022
Hi Issam
From the advice of Mr. Roberson, you can create 3 equations from the data points:
691.5802655 = Ge + (G*0.010931641²*t²)/(1 + 0.010931641²*t²);
719.3455778 = Ge + (G*0.011369615²*t²)/(1 + 0.011369615²*t²);
778.7159258 = Ge + (G*0.012298683²*t²)/(1 + 0.012298683²*t²);
and then solve them simultaneously to obtain the solutions for the 3 variables:
Ge ≈ 260.642
G ≈ 2166.56
t ≈ ±45.5822
  5 comentarios
Walter Roberson
Walter Roberson el 30 de Mayo de 2022
I only see two solutions.
In any case, why do you think that is an error?
syms Ge G1 t1 G2 t2;
w=[0.010931641 0.011369615 0.012298683];
Gp=[691.5802655 719.3455778 778.7159258];
E1= (Ge - Gp(1) + (G1*t1^2*w(1)^2)/(t1^2*w(1)^2 + 1)+(G2*t2^2*w(1)^2)/(t2^2*w(1)^2 + 1));
E11=(- Gp(1) + (G1*t1^2*w(1)^2)/(t1^2*w(1)^2 + 1)+(G2*t2^2*w(1)^2)/(t2^2*w(1)^2 + 1));
E2=(Ge - Gp(2) + (G1*t1^2*w(2)^2)/(t1^2*w(2)^2 + 1)+(G2*t2^2*w(2)^2)/(t2^2*w(2)^2 + 1));
E22=(- Gp(2) + (G1*t1^2*w(2)^2)/(t1^2*w(2)^2 + 1)+(G2*t2^2*w(2)^2)/(t2^2*w(2)^2 + 1));
E3=(Ge - Gp(3) + (G1*t1^2*w(3)^2)/(t1^2*w(3)^2 + 1)+(G2*t2^2*w(3)^2)/(t2^2*w(3)^2 + 1));
E33=(- Gp(3) + (G1*t1^2*w(3)^2)/(t1^2*w(3)^2 + 1)+ (G2*t2^2*w(3)^2)/(t2^2*w(3)^2 + 1));
sol = solve(E1,E11,E2,E22,E3,E33, Ge, G1, t1, G2, t2)
sol = struct with fields:
Ge: [2×1 sym] G1: [2×1 sym] t1: [2×1 sym] G2: [2×1 sym] t2: [2×1 sym]
vpa(subs([Ge, G1, t1, G2, t2], sol))
ans = 
issam BEN SALAH
issam BEN SALAH el 30 de Mayo de 2022
Thanks for the help Mr. Walter

Iniciar sesión para comentar.

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by