Given a vector (n=50 elements), which is expanded in known basis functions and known coefficients according to . I'd like to express v in an alternative known basis with unknown coefficients like . I obtain all coefficients via , in which the basis transformation matrix T follows from solution of the matrix equation with containing the as column vectors. This procedure works perfectly fine so far, with one exception: I'd like to ensure that , so the maximum value of the alternative expansion should never be smaller than the one of the original expansion.
Can this be done by optimization when solving for T in any way in Matlab?
fmincon with a nonlinear constraint would probably work, although because your constraint is non-differentiable, strictly speaking the problem doesn't satisfy fmincon's assumptions. It might be worth doing a preliminary step, where you replace your max constraint with,
for some . Then, use that solution as the initial guess when you solve the original problem (which corresponds to).
Thank you very much for your response! I just had a look at the function fmincon, but to be honest I'm not quite sure how to use it. Could you please give a more detailed explanation on its usage or even an example code, which applies to my specific problem?
No se puede completar la acción debido a los cambios realizados en la página. Vuelva a cargar la página para ver el estado actualizado.
Translated by
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.