Find the nearest point of intersections of circles

1 visualización (últimos 30 días)
Marek Konopka
Marek Konopka el 26 de Jun. de 2022
Editada: Sam Chak el 27 de Jun. de 2022
I need to find the nearest point of intersections of 4 circles. Centers of circles don't change, only the radius of circles changes. I know every intersection of each circle but I don't know how to find the average point of intersections 4 circles. Cannot find intersection of 4 circles, because the measurement error is too high, so I need to find some average point.
  2 comentarios
Matt J
Matt J el 26 de Jun. de 2022
Why not use mean?
Jan
Jan el 26 de Jun. de 2022
How is "average point of intersections 4 circles" mathematically defined? The 4 circles have 12 intersection points. If you have their positions, Matt J's auggestion sounds obvious.

Iniciar sesión para comentar.

Respuesta aceptada

MJFcoNaN
MJFcoNaN el 27 de Jun. de 2022
Hello,
You may need a different method than intersection. For example create a distance function under your own criterion. This is a simple one:
ori_x = [0 , 0 , -6.19, -6.1];
ori_y = [0 , 4.6 , 4.6 , 0 ];
r = [2.55, 4.05, 6.55, 3.65];
[xx, yy] = ndgrid(-20:1e-1:20,-20:1e-1:20);
vv = NaN([size(xx),4]);
for ii=1:4
vv(:,:,ii) = abs((xx-ori_x(ii)).^2+(yy-ori_y(ii)).^2-r(ii).^2);
end
vs = sum(vv,3);
vs(vs>100) = NaN;
contourf(xx,yy,vs)
[mm,I] = min(vs,[],"all","omitnan");
xx(I)
ans = -1.1000
yy(I)
ans = 0.6000

Más respuestas (1)

Sam Chak
Sam Chak el 27 de Jun. de 2022
Editada: Sam Chak el 27 de Jun. de 2022
Some very simple calculations and math concepts (no looping) that you can definitely follow to find the intersections between the circles. Let's try an example with the red circle and the blue circle.
syms x y
% since red & blue circle aligned at the same y-axis, then pick x as variable
% intersections lie at the top of red circle (+) and bottom of blue circle (–)
redC = sqrt(2.55^2 - (x - 0)^2) + 0;
bluC = - sqrt(4.05^2 - (x - 0)^2) + 4.6;
eqn1 = redC == bluC;
solx = solve(eqn1);
solx = double(solx)
solx = 2×1
-2.2371 2.2371
soly = subs(redC, x, solx);
soly = double(soly)
soly = 2×1
1.2239 1.2239
You should be able to find 6 intersections using this concept of coaxial centers.
For non-coaxial centers, let's try finding the intersections between the red circle and the green circle:
% One intersection lie at the top of red circle (+) and bottom of green circle (–)
redC = sqrt(2.55^2 - (x - 0)^2) + 0;
grnC = - sqrt(6.55^2 - (x + 6.19)^2) + 4.6;
eqn2 = redC == grnC;
solx = solve(eqn2);
solx = double(solx)
solx = 0.0309
soly = subs(redC, x, solx);
soly = double(soly)
soly = 2.5498
% One intersection lie at the bottom of red circle (–) and bottom of green circle (–)
redC = - sqrt(2.55^2 - (x - 0)^2) + 0;
grnC = - sqrt(6.55^2 - (x + 6.19)^2) + 4.6;
eqn3 = redC == grnC;
solx = solve(eqn3);
solx = double(solx)
solx = -2.4325
soly = subs(redC, x, solx);
soly = double(soly)
soly = -0.7651
You can find another 6 intersections using this concept of non-coaxial centers.

Categorías

Más información sobre Just for fun en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by