Custom loss function for DNN training

20 visualizaciones (últimos 30 días)
Fotios Mantoglou
Fotios Mantoglou el 12 de Jul. de 2022
Editada: David Ho el 11 de Oct. de 2023
I have the feed forward network as shown bellow. It consists of an input sequence layer, 2 hidden fully conected and an output regression layer.
Network architecture:
I have defined the layers as follows:
layers = [
sequenceInputLayer(4,"Name","sequence")
fullyConnectedLayer(4,"Name","fc_1")
fullyConnectedLayer(4,"Name","fc_2")
regressionLayer("Name","regressionoutput")];
I need to train the model where the input will be the same as the output. I need to restrict the weights of the layers using the following loss function:
L=L1+L2+L3+L4
where
L1= λ|cov(H)-I|
L2= λ|(H/4)+λ|W1*transpose(W1)-I|
L3= λ|cov(Q)-I|
L4= mse of input-output
H is the output of the 1st hidden layer and Q is the output of the second hidden layer and W the weight of each layer.The total loss function is L=L1+L2+L3+L4.
What is the best approach for this? Could posibly be done with regularisation?
Thank you!

Respuestas (2)

Pratyush Swain
Pratyush Swain el 10 de Oct. de 2023
Hi Fotios,
I understand you want to create a custom deep learning network.Please refer to https://in.mathworks.com/help/deeplearning/ug/define-custom-deep-learning-layers.html. It contains information regarding custom 'Regression output layer' and 'Intermediate layer'.
The output layer uses two functions to compute the loss and the derivatives: forwardLoss and backwardLoss. The forwardLoss function computes the loss L. The backwardLoss function computes the derivatives of the loss with respect to the predictions.
For example: To write a weighted cross entropy classification loss, try running this in the MATLAB command window
>> edit(fullfile(matlabroot,'examples','deeplearning_shared','main','weightedClassificationLayer.m'))
Hope this helps.

David Ho
David Ho el 11 de Oct. de 2023
Editada: David Ho el 11 de Oct. de 2023
Hello Fotios,
You can solve this constrained learning problem using a dlnetwork object and a custom training loop:
If I understand your question correctly, I believe the loss function should look something like this:
layers = [
sequenceInputLayer(4,"Name","sequence")
fullyConnectedLayer(4,"Name","fc_1")
fullyConnectedLayer(4,"Name","fc_2")];
net = dlnetwork(layers);
% Test loss function with random inputs and targets
rng(0);
X = dlarray(rand(4,10), "CT");
T = dlarray(rand(4,10), "CT");
lambda = 1;
loss = dlfeval(@(net,X,T) modelLoss(net, X, T, lambda), net, X, T)
loss =
1×1 single dlarray 58.8300
grad = 4×3 table
Layer Parameter Value ______ _________ _____________ "fc_1" "Weights" {4×4 dlarray} "fc_1" "Bias" {4×1 dlarray} "fc_2" "Weights" {4×4 dlarray} "fc_2" "Bias" {4×1 dlarray}
function [loss, grad] = modelLoss(net,X,T,lambda)
% Get the activations and weights of the fully connected layers
[h,q] = forward(net, X, Outputs=["fc_1", "fc_2"]);
w1 = net.Layers(2).Weights;
% Compute covariance matrices
covH = cov(stripdims(h)');
covQ = cov(stripdims(q)');
% Compute components of loss function
l1 = dlNorm(lambda*covH - eye(size(covH)));
l2 = lambda*dlNorm(h/4 + lambda*norm(w1*w1' - eye(size(w1)), "fro"));
l3 = lambda*dlNorm(covQ - eye(size(covQ)));
l4 = mse(q,T);
% Compute loss and gradients
loss = l1 + l2 + l3 + l4;
grad = dlgradient(loss, net.Learnables);
end
function normX = dlNorm(X)
% Frobenius norm of a dlarray
normX = sum(stripdims(X)'*stripdims(X), "all");
normX = sqrt(normX);
end

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by