Can't prove the convolution theorem of Fourier theorem for two dimensional matrices.
    7 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Palguna Gopireddy
 el 27 de Jul. de 2022
  
    
    
    
    
    Comentada: Palguna Gopireddy
 el 1 de Ag. de 2022
            I multiplied two 2D matrices.A, B
A=[1 2;1 1];
B=[1 2;2 1];
C=A.*B;
I convolved their respective DFTs of 512*512 samples each by using the code given in https://in.mathworks.com/matlabcentral/answers/1665734-how-to-perform-2-dimensional-circular-convolution?s_tid=srchtitle
A_fft2=fft2(A,512,512);
B_fft2=fft2(B,512,512);
C_fft2_cconv2=circular_conv(A_fft2, B_fft2);
I found the IDFT of C_fft2; and applied DFT on C
C_ifft2=ifft2(C_fft2);
C_fft2=fft2(C,512,512);
Acoording to fourier theorem
C_ifft2(1:2,1:2) should be equal to C;
C_fft2 should be equal to C_fft2_cconv2.
But neither are them are same in the results. 
Could someone tell how to get it.
0 comentarios
Respuesta aceptada
  Abderrahim. B
      
 el 27 de Jul. de 2022
        Hi!
Please read about discrete convolution ....
Perhaps this:
Conv, fft and ifft
x = randi(10, 20, 1);
y = randi(20,20,1);
n = length(x)+length(y)-1;
xConvFFt = ifft(fft(x,n).*fft(y,n)) ;
xConv = conv(x,y) ;
% compare
isequal(round(conv(x,y), 4), round(xConv, 4))
Conv2, fft2 and ifft2
x = randi(10, 20, 10);
y = randi(20,20,10);
m = length(x)+length(y)-1;
n = length(x) - 1;
xConvFFt2 = ifft2(fft2(x,m, n).*fft2(y,m, n)) ;
xConv2 = conv2(x,y) ;
% compare
isequal(round(xConvFFt2), round(xConv2))
HTH
5 comentarios
  Paul
      
      
 el 30 de Jul. de 2022
				
      Editada: Paul
      
      
 el 31 de Jul. de 2022
  
			When approximating an integral with a sum, the sum needs to be scaled by dtheta.
format short e
a2=[1 2 1 3];
b2=[2 3 2 1];
c2=a2.*b2
For N = 512
N = 512;
dtheta = 2*pi/N;
c2f_cconv_dft=(1/(2*pi))*cconv(fft(a2,N),fft(b2,N),N)*dtheta;
Note that 2*pi cancels, so better to just do
c2f_cconv_dft=cconv(fft(a2,N),fft(b2,N),N)/N;
c2f_cconv_idft=ifft(c2f_cconv_dft,512);
The first four points "match"
c2f_cconv_idft(1:4)
The rest of the points are "zero"
max(abs(c2f_cconv_idft(5:end)))
I think this example is actually demonstrating circular convolution theorem of the DFT or its dual, which should be closely related to the convolution property of the DTFT.
Más respuestas (0)
Ver también
Categorías
				Más información sobre Frequency Transformations en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





