How to solve a system of two linear equations in matrix form under a loop /
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Suppose that I have two coordinates, time and space , and two dependent variables c and T such that and . Now I have a system of two coupled equations which are given in matrices form as
I define the t and x vectors in the code as follows. How to calculate the matrix X inside the loops given below. Initial data is available, i.e. and are given.
for j=1:50
t(j)=j*0.05; % t vector
end
for i=1:50
x(i)=i*0.05; % space vector
end
%___________________________ running the loop_______________________________________
for j=1:50
for i=1:50
%???????? How to calculate the matric X here ????????????????????
end
end
2 comentarios
Jon
el 28 de Jul. de 2022
Is this a typo?
x(i)=i*0.05; % space vector
Did you mean
c(i)=i*0.05; % space vector
Respuestas (1)
Jon
el 28 de Jul. de 2022
Editada: Jon
el 28 de Jul. de 2022
I'll assume you know how to calculate A and B based upon your c and T values. Then to solve for X use
X = M\(J*A + B)
Note that using the \ operator is more numerically robust and efficient than actually computing the matrix inverse of M
2 comentarios
Jon
el 2 de Ag. de 2022
You could store the results in a 3 dimensional array, so
X = zeros(2,50,50); % preallocate
for i = 1:50
for j = 1:50
.
.
.
X(:,i,j) = M\(J*A + B)
end
end
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!