ODE15s with non-constant Jacobian

2 visualizaciones (últimos 30 días)
Berry
Berry el 2 de Ag. de 2022
Comentada: Berry el 3 de Ag. de 2022
Hi everyone,
i want to solve an ODE by using the Jacobian, that is not constant:
options = odeset( 'Jacobian' , @(t,x)J(u_int, deltaZ, Nz, cFeed), 'RelTol',1e-8, 'AbsTol',1e-8);
[t,V] = ode15s(@(t,v)odeTest(t,v), tspan, v0, options);
function dfdx = J(u_int, deltaZ, Nz, cFeed)
x = sym('x' , [1 Nz+4]);
f1 = (-u_int .* (x(1)^2 - cFeed) ./ deltaZ );
f2 = (-u_int .* (x(2:Nz+4) - x(1:Nz+3)) ./ deltaZ );
f = [f1, f2];
J = jacobian(f,x);
dfdx = (J);
end
%% ODE
function dfdt = odeTest(~, vi)
dfdt = zeros(length(vi),1);
%% Variables
u_int = 0.10;
H = 0.20;
Nz = 100;
deltaZ = H/(Nz+4);
cFeed = 10;
x = vi(1:Nz+4);
%% DGL
dfdt(1) = (-u_int .* (x(1)^2 - cFeed) ./ deltaZ );
dfdt(2: Nz+4) = (-u_int .* (x(2:Nz+4) - x(1:Nz+3)) ./ deltaZ );
end
The problem I am facing is following error:
Conversion to logical from sym is not possible.
Error in ode15s (line 405)
if absh * rh > 1
Error in test_jacobi_upwind (line 39)
[t,V] = ode15s(@(t,v)odeTest(t,v), tspan, v0, options);
I can make it work, if the Jacobian is a constant and does not depend on x(i) - but as soon as J is depending on x(i), I am getting errors.
Any help is appreciated.
Best,
M

Respuesta aceptada

Torsten
Torsten el 2 de Ag. de 2022
JacFun = J(u_int, deltaZ, Nz, cFeed);
options = odeset( 'Jacobian' , @(t,x)JacFun(t, x, u_int, deltaZ, Nz, cFeed), 'RelTol',1e-8, 'AbsTol',1e-8);
[t,V] = ode15s(@(t,x)odeTest(t,x,u_int, deltaZ, Nz, cFeed), tspan, v0, options);
function dfdx = J(u_int, deltaZ, Nz, cFeed)
x = sym('x' , [1 Nz+4]);
f1 = (-u_int .* (x(1)^2 - cFeed) ./ deltaZ );
f2 = (-u_int .* (x(2:Nz+4) - x(1:Nz+3)) ./ deltaZ );
f = [f1, f2];
J = jacobian(f,x);
dfdx = matlabFunction(J,'Vars',[t, x, u_int, deltaZ, Nz, cFeed]);
end
function dfdt = odeTest(t, vi, u_int, deltaZ, Nz, cFeed)
dfdt = zeros(length(vi),1);
%% Variables
u_int = 0.10;
H = 0.20;
Nz = 100;
deltaZ = H/(Nz+4);
cFeed = 10;
x = vi(1:Nz+4);
%% DGL
dfdt(1) = (-u_int .* (x(1)^2 - cFeed) ./ deltaZ );
dfdt(2: Nz+4) = (-u_int .* (x(2:Nz+4) - x(1:Nz+3)) ./ deltaZ );
end
  5 comentarios
Torsten
Torsten el 3 de Ag. de 2022
I didn't use this options command in my answer:
options = odeset( 'Jacobian' , @(t,x)JacFunc(u_int, deltaZ, Nz, epsilon,cFeed), 'RelTol',1e-8, 'AbsTol',1e-8);
Berry
Berry el 3 de Ag. de 2022
My mistake! Thank you very much! Everything works fine now.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by