Saving figures and automatic legend
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
University Glasgow
el 17 de Ag. de 2022
Comentada: University Glasgow
el 17 de Ag. de 2022
I tried this
ax = gca;
exportgraphics(ax,'myplot.png','Resolution',300)
but is saving only the last plot. I also want automatic legend. Below is my code:
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = -1; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 200;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 100];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
theta_middle = y(:,N/2); % theta at the middle of the layer (i.e., z=d/2)
% Extract the solution for theta and v
theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
figure
subplot(2,2,1)
plot(z, theta(1:5,:))
xlabel('z(\mum)')
ylabel('\theta(z,t)(rad)')
title('Director angle','FontSize',10)
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,2)
plot(z, v(1:5,:))
xlabel('z(\mum)')
ylabel('v(z,t)(m/s)')
title('Flow velocity')
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,3)
plot(t,theta_middle)
xlabel('z(\mum)')
ylabel('\theta(d/2,t)(rad)')
title('Director angle at the middle of the layer', 'FontSize',6)
ax = gca;
% Requires R2020a or later
exportgraphics(ax,'modelplot.png','Resolution',300)
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end
0 comentarios
Respuesta aceptada
dpb
el 17 de Ag. de 2022
You only saved a handle to the current axes via gca at the end -- but you created three (3) axes via subplot
Save the handles of the axes when you create them and then export each in turn, using the array of axes handles you just saved at the end.
Más respuestas (0)
Ver también
Categorías
Más información sobre Graphics Object Programming en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!