MATLAB Newton Raphson Method with a vector function

7 visualizaciones (últimos 30 días)
Radik Srazhidinov
Radik Srazhidinov el 19 de Ag. de 2022
Comentada: Torsten el 19 de Ag. de 2022
Hi! I am trying to use Newton Raphson Method to solve the following problem: Given a complex matrix $K$, let our vector variable be , where and . Also, my function is . I want to find a vector $p$ such that . To do that I use the following Newton Raphson algorithm , where the is a Jacobian (if Jacobian is singular, I think we can use a Moore-Penrose). I tried to modify the code here: https://www.mathworks.com/matlabcentral/answers/753414-matlab-newton-raphson-method-with-a-function-with-array-matrix-variables?s_tid=mwa_osa_a
Unfortunately, it is not working properly, even when . Can you please help me to fix it?
K=2.*rand(2,2)-1*ones(2,2)+i*(2.*rand(2,2) -1*ones(2,2));
K1=K+K';
K2=K'*K;
I=eye(2,2);
f = @(x1,x2,x3,x4) [K1*[x1 x2]'-x3*K2*[x1 x2]'-x4*[x1 x2]'; [x1 x2]*K2*[x1 x2]'-1; [x1 x2]*[x1 x2]'-1];
df = @(x1,x2,x3,x4) [K1-x3*K2-x4*I -K2*[x1 x2]' -[x1 x2]'; [x1 x2]*K2 0 0; [x1 x2] 0 0];
n=10
for i= 1:n
x10 = 0.001;
x20 = 0.001;
x30 = 0.001;
x40 = 0.001;
y = newtonraphson(f, df, x10, x20, x30, x40, n);
fprintf('%.4f \n', y);
end
function y = newtonraphson(f, df, x10, x20, x30, x40, n)
rounding = 5*10^-(4);
for i=1:100
f0 = f(x10,x20,x30,x40);
f0_der=df(x10,x20,x30,x40);
y=[x10 x20 x30 x40]'-f0_der\f0;
err=abs(y-[x10 x20 x30 x40]');
if err<ones(4,1)*rounding
break;
end
x10=y(1);
x20=y(2);
x30=y(3);
x40=y(4);
end
fprintf('The Root is : %f \n',y);
fprintf('No. of Iterations : %d\n',i);
end

Respuesta aceptada

Torsten
Torsten el 19 de Ag. de 2022
Editada: Torsten el 19 de Ag. de 2022
You have 7 equations for 4 unknowns. This won't give an exact solution, but only a solution in the least-squares sense.
K=2.*rand(2,2)-1*ones(2,2)+i*(2.*rand(2,2) -1*ones(2,2));
K1=K+K';
K2=K'*K;
x = lsqnonlin(@(x) fun(x(1),x(2),x(3),x(4),K1,K2),ones(4,1))
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x = 4×1
0.0091 0.8964 1.3065 -0.0835
res = norm(fun(x(1),x(2),x(3),x(4),K1,K2))
res = 0.5506
function res = fun(x1,x2,x3,x4,K1,K2);
res = zeros(7,1);
res(1:2) = real(K1*[x1 x2]'-x3*K2*[x1 x2]'-x4*[x1 x2]');
res(3:4) = imag(K1*[x1 x2]'-x3*K2*[x1 x2]'-x4*[x1 x2]');
res(5) = real([x1 x2]*K2*[x1 x2]'-1);
res(6) = imag([x1 x2]*K2*[x1 x2]'-1);
res(7) = [x1 x2]*[x1 x2]'-1;
end
  1 comentario
Torsten
Torsten el 19 de Ag. de 2022
That's an optimization problem, not a root-finding problem.
Use MATLAB's "fmincon" to solve.

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by