Not enough input arguments - trainNetwork
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi again,
I have attempted to make a 3 layer neural network, it is to classify Iris plants, I have received an error which states:
Error in seriesnetwork (line 34)
net = trainNetwork(trainset,layers,options);
Caused by:
Error using nnet.internal.cnn.trainNetwork.DLTInputParser>iParseInputArguments
Not enough input arguments.
I don't know what I am missing/if I have put incorrect values into the code (see below)
clear
clc
%% importing iris data
test = Iris_data;
%% Labelling iris data as 1,2,3 (setosa, versicolor, virginica)
label = zeros(150,1);
label(1:50,:) = 1;
label(51:100,:) = 2;
label(101:150,:) = 3;
test(:,5) = label;
k = randperm(150,50);
trainset = test(k(1:50),:);
test(k,:) = [];
clear k label % clearing variables
%%
numFeatures = size(test)-1;
numFeatures = numFeatures(2);
numClasses = 3;
layers = [
featureInputLayer(numFeatures,'Normalization','zscore')
fullyConnectedLayer(3)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
miniBatchSize = 25;
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(trainset,layers,options);
YPred = classify(net,trainset,'MiniBatchSize',miniBatchSize);
YTest = test(:,5);
accuracy = sum(Ypred == YTest)/numel(YTest)
attached is the iris data
0 comentarios
Respuestas (2)
Walter Roberson
el 24 de Ag. de 2022
When you pass numeric data as the first parameter to trainnetwork(), then you need to pass four parameters, with responses as the second parameter.
4 comentarios
Walter Roberson
el 24 de Ag. de 2022
net = trainNetwork(trainset, responses, layers, options);
for the case where trainset is a numeric array rather than a dataset or table
David Ho
el 24 de Ag. de 2022
Editada: David Ho
el 24 de Ag. de 2022
As Walter has pointed out, if your data is in a numeric array, you need to pass predictors and responses separately.
For a classification task, you also need to specify the labels as a categorical array: after you set the labels on line 9 you can convert them to categorical by inserting the line
labels = categorical(labels);
Then you need to split the labels using the same partitioning as you split your predictors, rather than concatenating them with the predictors: i.e. remove line 10, and add something like
labelsTrain = labels(k(1:50));
labelsTest = labels(k(51:end));
I believe this should help you to train the network as expected, but if you are still experiencing issues, it would be great if you could upload the data you are using so that we can run your code.
0 comentarios
Ver también
Categorías
Más información sobre Custom Training Loops en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!