CNN-LSTM in MATLAB

41 visualizaciones (últimos 30 días)
nazanin behfar
nazanin behfar el 27 de Ag. de 2022
Respondida: H W el 3 de Nov. de 2022
I'm trying to implement a CNN + LSTM, but I have an error:
Invalid training data. If the network outputs sequences, then regression responses must be a cell array
of numeric sequences, or a single numeric sequence.
or
Invalid training data. Responses must be a matrix of numeric responses, or a N-by-1 cell array of
sequences, where N is the number of sequences. The feature dimension of all sequences must be the same.
or
Invalid training data. X and Y must have the same number of observations.
what is my mistake?
my code is:
inputSize = [20 25 3];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 5;
numResponses = 1;
layers = [ ...
sequenceInputLayer(inputSize,'Name','input')
sequenceFoldingLayer('Name','fold')
convolution2dLayer(filterSize,numFilters,'Padding','same','Name','conv')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')
sequenceUnfoldingLayer('Name','unfold')
flattenLayer('Name','flatten')
lstmLayer(numHiddenUnits,'OutputMode','sequence','Name','lstm')
fullyConnectedLayer(1, 'Name','fc')
regressionLayer('Name','regression')];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(input_train,target_train,lgraph,options);
My input_train is a 4-D double that its size is (20,25,3,58) in other words I have 3 sets of images that each set containes 58 set of images with size of 20x25
and when I set target_train a matrix of (58,500) or a 4-D double that its size is (1,500,1,58) or a 4-D double that its size is (1,20,25,58) and
fully connected layer to fullyConnectedLayer(500, 'Name','fc') or fullyConnectedLayer(1, 'Name','fc') or fullyConnectedLayer([20 25], 'Name','fc') the error is:
in all cases the error is:
"Invalid training data. Sequence responses must have the same sequence length as the corresponding
predictors."
  2 comentarios
HONGYI LI
HONGYI LI el 27 de Sept. de 2022
I have the same issue, do you have solved? thanks
nazanin behfar
nazanin behfar el 29 de Sept. de 2022
Unfortunately no.

Iniciar sesión para comentar.

Respuestas (1)

H W
H W el 3 de Nov. de 2022
添加层分支
将网络分支添加到层次图中。每个分支均为一个线性层组。
tempLayers = [
sequenceInputLayer([20 25 3],"Name","sequence")
sequenceFoldingLayer("Name","seqfold")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
convolution2dLayer([5 5],32,"Name","conv","Padding","same")
batchNormalizationLayer("Name","batchnorm")
reluLayer("Name","relu")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
sequenceUnfoldingLayer("Name","sequnfold")
flattenLayer("Name","flatten")
lstmLayer(5,"Name","lstm")
fullyConnectedLayer(1,"Name","fc")
regressionLayer("Name","regressionoutput")];
lgraph = addLayers(lgraph,tempLayers);
% 清理辅助变量
clear tempLayers;
连接层分支
连接网络的所有分支以创建网络图。
lgraph = connectLayers(lgraph,"seqfold/out","conv");
lgraph = connectLayers(lgraph,"seqfold/miniBatchSize","sequnfold/miniBatchSize");
lgraph = connectLayers(lgraph,"relu","sequnfold/in");

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by