Where is the wrong in this code??

1 visualización (últimos 30 días)
Aisha Mohamed
Aisha Mohamed el 31 de Ag. de 2022
Comentada: Aisha Mohamed el 1 de Sept. de 2022
Because I trust the answers of all the Matlab experts in this group, and I thank all of them. The genius expert Torsten saw that there is some mistake in my code that used to plot cos(phase(f_b(1/z)), I used his notes but still there are some missing points in this work. I think this is because I did not write my question in the correct way.
So I ask again where is the wrong in this code??
I have two functions f_k(z) and f_b(1/z) where,
1-f_k(z) = (0.1000 + 0.3000i) + (0.4243 + 0.0017i)z + (0.9000- 0.0010i)z^2
we define p from f_k(z)as,
p=[ ( 0.9000 - 0.0010i) (0.4243 + 0.0017i) (0.1000 + 0.3000i) ];
2-f_b(1/z) = (0.1000 - 0.3000i)z^-1 + (0.2121 - 0.0008i)z^-2 + (0.9000 +0.0010i)z^-3
we define p1 from f_b(1/z)as,
p1=[ ( 0.9000 + 0.0010i) (0.2121 - 0.0008i) (0.1000 - 0.3000i) (0)];
The function f_b(1/z) is not defined at z = 0 which means the graph of this function must be undefined at z = 0
But when I use the code %f_of_1_over_z_result = polyval(p1, z); I found the graph for | f_b(1/z) | and | f_k (z) | are same
and | f_b(1/z) | defined at z = 0 (which must not happen in the myfunction |f_b(1/z)| because it is not defined at z = 0) , as you can see from the following figure:
But,
% Where as when I use the code % f_of_1_over_z_result = polyval(p1,1./z);
% the function |f_b(1/z)|does not define at z=0 (that what must happen in my case) as you can see in the following figure,
I used this code,
p=[ ( 0.9000 - 0.0010i) (0.4243 + 0.0017i) (0.1000 + 0.3000i) ];
p1=[ ( 0.9000 + 0.0010i) (0.2121 - 0.0008i) (0.1000 - 0.3000i) (0)];
re_z = -6.005:.01:6.005;
im_z= -6.005:.01:6.005;
[re_z,im_z] = meshgrid(re_z,im_z);
z = re_z + 1i*im_z;
f_of_z_result = polyval(p,z);
% %
f_of_1_over_z_result = polyval(p1,1./z); % I used this code in the first figure
% f_of_1_over_z_result = polyval(p1,z); % I used this code in the second figure
figure();
subplot(2,2,1)
surf(re_z,im_z,abs(f_of_z_result),'EdgeColor','none')
colorbar
title('|f_k(z)|')
xlabel('Z_R')
ylabel('Z_I')
zlim([0 15]) %adjust this value as needed
caxis([-6 6]) %adjust this value as needed
% grid on
subplot(2,2,2)
surf(re_z,im_z,cos(angle(f_of_z_result)),'EdgeColor','none')
colorbar
title('cos(phase of f_k(z))')
xlabel('Z_R')
ylabel('Z_I')
zlim([-5 5]) %adjust this value as needed
caxis([-1 1]) %adjust this value as needed
subplot(2,2,3)
surf(re_z,im_z,abs(f_of_1_over_z_result),'EdgeColor','none')
colorbar
title('|f_b(1/z)|')
xlabel('Z_R')
ylabel('Z_I')
zlim([0 15]) %adjust this value as needed
caxis([-0.15 0.15])
subplot(2,2,4)
surf(re_z,im_z, cos(angle(f_of_1_over_z_result)),'EdgeColor','none')
colorbar
title(('cos(phase of f_b(1/z))'))
xlabel('Z_R')
ylabel('Z_I')
caxis([-1 1]) %adjust this value as needed
zlim([-1 1]) %adjust this value as needed
grid on
Where is the wrong in this code??

Respuesta aceptada

Torsten
Torsten el 31 de Ag. de 2022
Editada: Torsten el 1 de Sept. de 2022
f_b(1/z) = (0.1000 - 0.3000i)z^-1 + (0.2121 - 0.0008i)z^-2 + (0.9000 +0.0010i)z^-3
I wrote it several times already, but this function is the same as
f(w) = (0.1000 - 0.3000i)w + (0.2121 - 0.0008i)w^2 + (0.9000 +0.0010i)w^3
except for 1/z=w=0.
But if we define f_b(0) = 0, we remove this singularity and the two functions are identical all over the complex plane.
This can be seen in the first 4 graphics where we get a value of 0 for abs(f_b(1/z)) at 1/z=0.
So summarizing: There is nothing wrong in your code, but you must decide whether you want to define
f_b(1/z) = (0.1000 - 0.3000i)z^-1 + (0.2121 - 0.0008i)z^-2 + (0.9000 +0.0010i)z^-3
or
f_b(z) = (0.1000 - 0.3000i)z^-1 + (0.2121 - 0.0008i)z^-2 + (0.9000 +0.0010i)z^-3
The first definition gives the 2 pictures in the first gallery, the second definition gives the 2 pictures in the second gallery.
  3 comentarios
Torsten
Torsten el 1 de Sept. de 2022
Editada: Torsten el 1 de Sept. de 2022
In order not to confuse people, the usual way to ask your question would have been
Given
f_b(z) = (0.1000 - 0.3000i)z + (0.2121 - 0.0008i)z^2 + (0.9000 +0.0010i)z^3
and setting
g(z) = f_b(1/z)
how to plot abs(g(z)) and cos(phase(g(z))) ?
?
p1=[ ( 0.9000 + 0.0010i) (0.2121 - 0.0008i) (0.1000 - 0.3000i) (0)];
re_z = -6.005:.01:6.005;
im_z= -6.005:.01:6.005;
[re_z,im_z] = meshgrid(re_z,im_z);
z = re_z + 1i*im_z;
f_of_1_over_z_result = polyval(p1,1./z); % I used this code in the first figure
figure
subplot(2,2,1)
surf(re_z,im_z,abs(f_of_1_over_z_result),'EdgeColor','none')
colorbar
title('|f_b(1/z)|')
xlabel('Z_R')
ylabel('Z_I')
zlim([0 15]) %adjust this value as needed
caxis([-0.15 0.15])
subplot(2,2,2)
surf(re_z,im_z, cos(angle(f_of_1_over_z_result)),'EdgeColor','none')
colorbar
title(('cos(phase of f_b(1/z))'))
xlabel('Z_R')
ylabel('Z_I')
caxis([-1 1]) %adjust this value as needed
zlim([-1 1]) %adjust this value as needed
grid on
Aisha Mohamed
Aisha Mohamed el 1 de Sept. de 2022
Thanks so much Torsten. your ways really helpful.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by