How to do Double numerical integration with a variable limits

10 visualizaciones (últimos 30 días)
Can someone please help me in doing numerical integration on the following function, I want to do double numerical integration with respect to y and x, such that the final answer will be a function of z only. Also the limit of integration is not a constant, it is basically something like (x-y, x+y), not sure if there exist a way to do this, can someone please advise me on how to proceed?
Thank you
  10 comentarios
Torsten
Torsten el 4 de Sept. de 2022
The integral (once it is correctly written) could be considered as a function of z. Then numerical integration can be carried out.
Abdulaziz Al-Amodi
Abdulaziz Al-Amodi el 6 de Sept. de 2022
Editada: Abdulaziz Al-Amodi el 6 de Sept. de 2022
z is always positive, I made a mistake when I wrote -inf, was just trying to understand the implementation of it.
I found 'vpaintegral' and it looks promising but it is very slow to compute.
Thank you for your help

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 6 de Sept. de 2022
Editada: Matt J el 6 de Sept. de 2022
I'll demonstrate for a simpler function. The technique is the same regardless of what function we're integrating.
F=@(x,y,z) x.^2+y.^2+z.^2; %The input function to be integrated
Iyz=@(y,z)integral( vect(@(q)F(q,y,z)), z-y,z+y); %partial integral w.r.t. x
Iz=@(z) integral( vect(@(q)Iyz(q,z)) , 0,z); %partial integral w.r.t. y
Iz(1)
ans = 2.6667
function fun=vect(fun)
%vectorize a non-vectorized function
fun=@(x) arrayfun(fun,x);
end
  6 comentarios
Torsten
Torsten el 8 de Sept. de 2022
Editada: Torsten el 8 de Sept. de 2022
Yes, the square root in the denominator is quite ambitious ... When it gives real values and when it is different from 0 ... To take care of it in the integration limits for x,y and z won't be easy - be it with or without Mathematica.
Abdulaziz Al-Amodi
Abdulaziz Al-Amodi el 8 de Sept. de 2022
Right, I'll hopefully look more into it to figure it out.
Thanks again!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by