how to draw a cube with planes
29 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
俊鹏 陈
el 9 de Sept. de 2022
Comentada: Star Strider
el 13 de Sept. de 2022
Thank you for your answer!
Actually, I want to draw the cube with the plane property. But there is no good way
here is my data and my method(Draw the cube through the lines.)
coor_Scope = [0.2065,0.5765;
-0.5867,-0.2267;
-0.4419,0.4381];
A=[coor_Scope(1,1),coor_Scope(2,2),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,2),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,2),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,2),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,1),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,1),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,1),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,1),coor_Scope(3,2)];
d=[1 2 3 4 8 5 6 7 3 2 6 5 1 4 8 7];
plot3(A(d,3),A(d,1),A(d,2));
The effect is shown above.
I want the cube to have planar properties, such as color, transparency, etc.
For example, the “patch” function can be modified freely.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1120545/image.png)
That's all my questions. Thank you again for your answers!
2 comentarios
Respuesta aceptada
Star Strider
el 9 de Sept. de 2022
You organised them well, however they still need a bit of revision to plot the surfaces correctly —
coor_Scope = [ 0.2065, 0.5765;
-0.5867,-0.2267;
-0.4419, 0.4381];
A=[coor_Scope(1,1),coor_Scope(2,2),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,2),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,2),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,2),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,1),coor_Scope(3,2);
coor_Scope(1,1),coor_Scope(2,1),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,1),coor_Scope(3,1);
coor_Scope(1,2),coor_Scope(2,1),coor_Scope(3,2)];
d=[1 2 3 4 8 5 6 7 3 2 6 5 1 4 8 7];
X = A(d,3);
Y = A(d,1);
Z = A(d,2);
figure
plot3(A(d,3),A(d,1),A(d,2));
xlabel('X')
ylabel('Y')
zlabel('Z')
[az,el] = view;
figure
hold on
patch([X(1:6) flip(X(1:6))], [Y(1:6) flip(Y(1:6))], [Z(1:6) flip(Z(1:6))], 'r', 'FaceAlpha',0.25)
kp = 2;
patch([X((1:6)+kp) flip(X((1:6)+kp))], [Y((1:6)+kp) flip(Y((1:6)+kp))], [Z((1:6)+kp) flip(Z((1:6)+kp))], 'g', 'FaceAlpha',0.25)
kp = 10;
patch([X((1:6)+kp) flip(X((1:6)+kp))], [Y((1:6)+kp) flip(Y((1:6)+kp))], [Z((1:6)+kp) flip(Z((1:6)+kp))], 'b', 'FaceAlpha',0.25)
hold off
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
view(az,el)
I leave the rest to you.
The ‘secret’ to the patch function is that each patch has to enclose a specific region in order in every coordinate dimension. In a 2D plot this would be —
figure
patch([1 3 3 1], [1 2 3 4], 'g')
axis([0 4 0 5])
text([1 3 3 1], [1 2 3 4], compose('(%d, %d)', [1 3 3 1; 1 2 3 4].'))
That demonstrates how it works.
.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Polygons en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!