solving differential equation system with ode45
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have a system of second order diferential equations:

I would like to solve this system using ode45.
here is what i tried for solving the system:
function dYdt = odefcn(t,Y)
load STIFF_VALUES
load THETA
A=6.58e5;B=1.8;C_1=0.3083e-3;C_2=0.4439e-3;D=6.58e5;E=1.8;F=60e3;
G=51.6831;H=0.96e-1;I=F*30/25;J=70.4769;K=2e-1;M=67e-3;
L = interp1(THETA,STIFF_VALUES,t);
N=L*((Y(1)-Y(3))-(G*Y(5)-J*Y(7)))+M*((Y(2)-Y(4))-...
(G*Y(6)-J*Y(8)));
dYdt = [ Y(2);
1/C_1*(A*Y(1)+ B*Y(2)-N);
Y(4);
1/C_2*(-D*Y(3)- E*Y(4)+N);
Y(6);
1/H*(F+G*N);
Y(8);
1/K*(-I-J*N)];
end
init_cond = [0,0,0,0,0,2400,0,2000]';
t_interval=[0 10];
[t,y]=ode45(@(t,Y) odefcn(t,Y) , t_interval , init_cond);
I got NaN values for y(:,1).
*I tried "ode15s" which returns the following warning!
Warning: Failure at t=1.451171e-02. Unable to meet integration tolerances without reducing the
step size below the smallest value allowed (2.775558e-17) at time t.
1 comentario
Torsten
el 17 de Sept. de 2022
The setup of the system for ODE45 looks correct.
So it remains to check the initial conditions and the model parameters.
You should load THETA and STIFF_VALUES in the program where you call ode45 and pass the arrays to the solver as
[t,y]=ode45(@(t,Y) odefcn(t,Y,THETA,STIFF_VALUES) , t_interval , init_cond);
...
function dYdt = odefcn(t,Y,THETA,STIFF_VALUES)
...
end
This saves time.
Further, take care that THETA(1) <= t <= THETA(end). Otherwise, interp1 will return NaN for L.
Respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!