Volume formed by a moving triangle

3 visualizaciones (últimos 30 días)
Miraboreasu
Miraboreasu el 23 de Sept. de 2022
Editada: Torsten el 3 de Oct. de 2022
Hello,
A pressure ff (not force) is applied to the three points of a triangle. The triangle is moving during the time ΔtΔt (t2-t1), and I know the coordinates of each point, namely
t1: p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3)
t2: p1(xx1,yy1,zz1),p2(xx2,yy2,zz2),p3(xx3,yy3,zz3)
I also know the velocity as a vector for each point
t1: p1(v1x,v1y,v1z),p2(v2x,v2y,v2z),p3(v3x,v3y,v3z)
t2: p1(vv1x,vv1y,vv1z),p2(vv2x,vv2y,vv2z),p3(vv3x,vv3y,vv3z)
I know this is not 100% right expression, but I want to know how much energy this pressure, p, bring to the system
  6 comentarios
Miraboreasu
Miraboreasu el 3 de Oct. de 2022
Editada: Miraboreasu el 3 de Oct. de 2022
@Walter Roberson Let's make a simplication regard to the velocity, can you please show me how to "express the positions with a simple parametric formula, calculate the parametric area of the triangle, and integrate that area over time."
I know the coordinates of each point, namely
t1: p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3)
t2: p1(xx1,yy1,zz1),p2(xx2,yy2,zz2),p3(xx3,yy3,zz3)
Torsten
Torsten el 3 de Oct. de 2022
Editada: Torsten el 3 de Oct. de 2022
Is the normal to the triangle always equal to the direction in which the triangle is swept ?
Otherwise, you will have to integrate. Something like
V(t) = A*integral_{t'=0}^{t'=t} dot(n(t'),v(t')) dt'
where A is the area of the triangle, n(t') is the (unit) normal vector to the triangle and v(t') is the velocity vector at time t'.

Iniciar sesión para comentar.

Respuesta aceptada

Chunru
Chunru el 23 de Sept. de 2022
Editada: Chunru el 23 de Sept. de 2022
% initial triangle
p1 = [0, 0, 0]; p2 = [3, 0, 0]; p3 = [0 4 0];
% the velocity vector should be specified (instead of final triangle since
% final triangle coordinates cannot be arbitrary if volume is going to be
% computed)
v = [0 0 1];
t = 3;
cbase = .5*cross(p2-p1, p3-p1)
cbase = 1×3
0 0 6
vol = dot(cbase, v*t)
vol = 18
% If you know p1, p2, p3 and v vs t, you can consider to use the above
% calculation for each time interva, where the volume can be approximated
% by using the base area and the velocity vector.
  3 comentarios
Chunru
Chunru el 23 de Sept. de 2022
Last statement should be vol (while v is a vector defined earlier). See update.
Miraboreasu
Miraboreasu el 23 de Sept. de 2022
How can I make sure integral of pressure (force) and velocity are the same direction?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre 3-D Volumetric Image Processing en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by