Resultant vector from three different location and normal vector of a plane
    11 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Miraboreasu
 el 30 de Sept. de 2022
  
    
    
    
    
    Comentada: William Rose
      
 el 30 de Sept. de 2022
            Hey, I have three vector in the xyz space.
How to compute the Resultant vector from these three vectors, they are
  0.000326  -0.00018  -0.00017 
  0.000365  -0.00016  -0.00017 
  -0.00015  -0.00018  -0.00039 
and their start coordinates are
  2.53493  2.47587  2.47282 
  2.54089  2.48301  2.47585 
  2.4791  2.47583  2.46097 
these start coordinates can form a plane, how to calculate the normal vector of this plane?
0 comentarios
Respuesta aceptada
  Torsten
      
      
 el 30 de Sept. de 2022
        v1 = [0.000326  -0.00018  -0.00017 ];
v2 = [0.000365  -0.00016  -0.00017 ];
v3 = [-0.00015  -0.00018  -0.00039 ];
% compute resultant
R = v1 + v2 + v3
P1 = [2.53493  2.47587  2.47282 ];
P2 = [2.54089  2.48301  2.47585 ];
P3 = [2.4791  2.47583  2.46097 ];
% compute normal
N = cross(P2-P1,P3-P1)/norm(cross(P2-P1,P3-P1))
1 comentario
  William Rose
      
 el 30 de Sept. de 2022
				In case it is onf interest to you (and I think it is of interest, based on your other posts):
The resultant vector is not aligned with the normal.
v1 = [0.000326  -0.00018  -0.00017 ];
v2 = [0.000365  -0.00016  -0.00017 ];
v3 = [-0.00015  -0.00018  -0.00039 ];
R = v1 + v2 + v3;                       % resultant
P1 = [2.53493 2.47587 2.47282 ];
P2 = [2.54089 2.48301 2.47585 ];
P3 = [2.47910 2.47583 2.46097 ];
N = cross(P2-P1,P3-P1)/norm(cross(P2-P1,P3-P1)); % unit normal
The angle between them (in degrees) is
a=acos(dot(R,N)/(norm( R)*norm(N)))*180/pi
An angle a=180-130.6 is equally valid, since the direction of N depends on the side order chosen when computing the cross product, and that choice seems arbitrary.  
If you are computing Work = force * displacement = pressure * area * displacement, as you said in a separate thread, you should use the dot product (inner product):
Pr=1;                           %pressure
A=0.5*norm(cross(P2-P1,P3-P1)); %area
W=Pr*A*dot(N,R)                 %work (up to a sign)
where Pr=pressure, A=area, N=unit normal, R=displacement. Pr and A are scalars, N and R are vectors.  You will determine the sign for W based on your understanding of the physics.
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!