derivative of the Geometric Jacobian

6 visualizaciones (últimos 30 días)
btk20
btk20 el 4 de Oct. de 2022
Respondida: Leepakshi el 2 de Mayo de 2025
Hi,
Is there an efficient and easy way to find the \dot{J} based on the actual Jacobian of a manipulator?
I have
J = geometricJacobian(obj.RigidBodyTreeInternal, q, obj.EndEffectorName);
Thanks in advance

Respuestas (1)

Leepakshi
Leepakshi el 2 de Mayo de 2025
Hi,
No builtin function is provided in MATLAB for direct derivative of Jacobian , but you can compute (\dot{J}) (the time derivative of the Jacobian) either numerically or symbolically: numerically, use the finite difference method in MATLAB by evaluating the Jacobian at (q) and at (q + \dot{q} \cdot dt) and dividing the difference by (dt):
dt = 1e-6;
J_now = geometricJacobian(obj.RigidBodyTreeInternal, q, obj.EndEffectorName);
J_next = geometricJacobian(obj.RigidBodyTreeInternal, q + q_dot*dt, obj.EndEffectorName);
J_dot = (J_next - J_now) / dt;
Alternatively, you can use symbolic differentiation for analytical insight, for example:
clear all
clc
syms q1(t) q2(t) q3(t) a2 a3
J11 = -sin(q1(t))*(a3*cos(q2(t) + q3(t)) + a2*cos(q2(t)));
dJ11dt = diff(J11, t); % Symbolic time derivative
This allows you to derive (\dot{J}) analytically and then substitute joint values and velocities as needed. Combining both methods gives you flexibility for both simulation and analysis.
Hope this helps!

Categorías

Más información sobre Robotics System Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by