Curve fitting to data using fit

2 visualizaciones (últimos 30 días)
Editor
Editor el 11 de Oct. de 2022
Comentada: Cris LaPierre el 11 de Oct. de 2022
I have data x sampled at times t. I would like to fit my function to this data. Below is a code.
clear; close all
x=[100; 85.4019292604501; 77.9310344827586; 79.3365583966828; 70.3524533;
13.213644524237; 24.5654917953199; 12.6526340272125;
9.71822886716503; 9.99113213124446; 10.525];
t=[0; 24; 24; 24; 24; 48; 48; 48; 72; 72; 72;];
mdl=fittype('A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t)-1+lambda.*t)/lambda^2))','indep','t');
fittedmdl = fit(t,x,mdl,'start',[0.1 0.1 0.1 0.1])
fittedmdl =
General model: fittedmdl(t) = A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t) -1+lambda.*t)/lambda^2)) Coefficients (with 95% confidence bounds): A = 100 (84.3, 115.7) C = -120.9 (-9.45e+09, 9.45e+09) D = 6.135 (-4.793e+08, 4.793e+08) lambda = 105.9 (-8.273e+09, 8.273e+09)
plot(fittedmdl,'k.')
hold on
plot(t,x,'.m', MarkerSize=20)
And I obtain the following figure:
I am not impressed with the fitting. Can someone please check where I could be going wrong. Thanks in anticipation.
  9 comentarios
Editor
Editor el 11 de Oct. de 2022
Thank you all for your constructive comments. I can tell that one of the problem could be the poor choice of initial conditions for this complex model. I will try though to play around with the initial condtions to see whether anything good can come out.
Thank you once again
Cris LaPierre
Cris LaPierre el 11 de Oct. de 2022
Just responding about the missing negative sign. The negative sign before C has been applied to the contents inside parentheses. So it is there.
-C(1-exp(t)) is the same as C(exp(t)-1)

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 11 de Oct. de 2022
Editada: Matt J el 11 de Oct. de 2022
x=[100; 85.4019292604501; 77.9310344827586; 79.3365583966828; 70.3524533;
13.213644524237; 24.5654917953199; 12.6526340272125;
9.71822886716503; 9.99113213124446; 10.525];
t=[0; 24; 24; 24; 24; 48; 48; 48; 72; 72; 72;];
mdl=fittype('A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t)-1+lambda.*t)/lambda^2))','indep','t');
fittedmdl = fit(t,x,mdl,'start',[100 0.1 0.1 0.1],'Lower',[0 0 0 0])
fittedmdl =
General model: fittedmdl(t) = A*exp((-C.*(1-exp(-lambda.*t))/lambda)-(D*(exp(-lambda.*t) -1+lambda.*t)/lambda^2)) Coefficients (with 95% confidence bounds): A = 108.1 (88.32, 128) C = 4.114e-14 (fixed at bound) D = 0.001322 (0.0002522, 0.002393) lambda = 8.823e-07 (-0.0381, 0.0381)
H=plot(fittedmdl,t,x);
H(1).MarkerSize=20; H(1).Color='m';
H(2).Color='k';H(2).LineWidth=2;

Más respuestas (0)

Categorías

Más información sobre Interpolation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by