How to get Precision, Recall,ROC,F_Mesure?

2 visualizaciones (últimos 30 días)
Arya Faturrahman
Arya Faturrahman el 12 de Oct. de 2022
Hello anyone I want to get Precision, Recall, Sensitivity,Sprecificity,ROC. But I don't know how to implements code. i get Error at perfCurve and i don't know to fix it.
This my Train Code
imds = imageDatastore('Dataset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
tbl = countEachLabel(imds);
minSetCount = min(tbl{:,2});
imds = splitEachLabel(imds, minSetCount, 'randomize');
countEachLabel(imds);
net = resnet50();
lgraph = layerGraph(net);
clear net;
numClasses = 2;
%numel(lgraph.Layers(end).ClassNames);
[trainingSet, testSet] = splitEachLabel(imds, 0.7, 'randomize');
imageSize = [224 224 3];
augmentedTrainingSet = augmentedImageDatastore(imageSize,...
trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize,...
testSet, 'ColorPreprocessing', 'gray2rgb');
% New Learnable Layer
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10,...
'BiasLearnRateFactor',10);
% Replacing the last layers with new layers
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newsoftmaxLayer = softmaxLayer('Name','new_softmax');
lgraph = replaceLayer(lgraph,'fc1000_softmax',newsoftmaxLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_fc1000',newClassLayer);
options = trainingOptions('adam',...
'MaxEpochs',6,'MiniBatchSize',8,...
'Shuffle','every-epoch', ...
'ValidationData', augmentedTestSet, ...
'ValidationFrequency', 30, ...
'InitialLearnRate',1e-4, ...
'Verbose',false, ...
'Plots','training-progress');
netTransfer = trainNetwork(augmentedTrainingSet,lgraph,options);
And This my Test code for get the precision and any parameters
YPred = predict(netTransfer, augmentedTestSet); %imds_test is the image dastore containing the test images.
[Xpr,Ypr,Tpr,AUCpr] =perfcurve(testSet, newClassLayer, 1, 'xCrit', 'reca', 'yCrit', 'prec');
[c,cm,ind,per] = confusion(targets,outputs); %per represents the Matrix of percentages. Please refer to the doc for more details.
Can you help me to fix and get the data?.

Respuestas (0)

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Productos


Versión

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by