Problem using symbolic sinc?

7 visualizaciones (últimos 30 días)
BLP
BLP el 14 de Oct. de 2022
Editada: Paul el 17 de Oct. de 2022
Hello everybody,
I have tried to get a plot of the absolute value of the Fourier transform for a square pulse using the equation . The code I used is
syms x y w F
A = 1;
tau = 1;
y(x) = piecewise((x<-tau/2), 0, ...
(x==tau/2 & x==tau/2), 0.5, ...
(x>-tau/2 & x<tau/2), 1, x>0.5, 0);
figure1 = figure;
axes1 = axes('Parent',figure1);
hold(axes1,'on');
fplot(y,[-1.5 1.5],'Parent',axes1,'MarkerSize',6,'LineWidth',3);
ylabel('\Pi(t)','FontSize',26,'FontName','Calibri');
xlabel('t','FontSize',26,'FontName','Calibri');
ylim(axes1,[0 1.5]);
box(axes1,'on');
hold(axes1,'off');
set(axes1,'FontName','Calibri','FontSize',20,'XAxisLocation','origin',...
'XTick',[-1/2 0 1/2],'XTickLabel',{'-\tau/2','0','\tau/2'}, ...
'XLimitMethod','tight','YAxisLocation','origin',...
'YTick',[0 1],'YTickLabel',{'0','A'},'YLimitMethod','tight',...
'ZLimitMethod','tight');
F = A*tau*sinc(w/(2*pi)*tau);
figure2 = figure;
axes2 = axes('Parent',figure2);
fplot(abs(F),[-12*pi/tau 12*pi/tau],'Parent',axes2,'MarkerSize',6,'LineWidth',3);
ylim(axes2,[-0.5 A*tau*1.2]);
xlim(axes2,[-13*pi/tau 13*pi/tau])
box(axes2,'on');
hold(axes2,'off');
set(axes2,'FontSize',14,'XAxisLocation','origin','XTick', ...
[-8*pi/tau -6*pi/tau -4*pi/tau -2*pi/tau 0 2*pi/tau 4*pi/tau 6*pi/tau 8*pi/tau], ...
'XTickLabel',{'-8\pi/\tau','-6\pi/\tau','-4\pi/\tau','-2\pi/\tau','0',...
'2\pi/\tau','4\pi/\tau','6\pi/\tau','8\pi/\tau'},'XTickLabelRotation',90, ...
'YGrid','on','YAxisLocation','origin','YTick',[0 A*tau],'YTickLabel',{'0','A\tau'});
ylabel('|F(\omega)|','FontSize',18,'FontName','Calibri');
xlabel('\omega','FontSize',18,'FontName','Calibri');
The plot of seems to be correct but the gray dashed line is a bit surprising.
Than I tried to get the I have tried to get a plot of the absolute value of the Fourier transform for a pulse of sinusoidal function given by the equation using the foolowing code
syms x t
A = 1;
f=8;
g = A*cos(2*pi*f*t);
figure3 = figure;
axes3 = axes('Parent',figure3);
hold(axes3,'on');
% fplot(heaviside(t + 0.5), [-2, 2],'Parent',axes22,'MarkerSize',6,'LineWidth',3)
% fplot(-heaviside(t - 0.5), [-2, 2],'Parent',axes22,'MarkerSize',6,'LineWidth',3)
fplot(t,g*(heaviside(t + 0.5)-heaviside(t - 0.5)),[-2 2],'Parent',axes3,'MarkerSize',6,'LineWidth',2)
ylim(axes3,[-1.5,1.5]);
xlim(axes3,[-1.5,1.5]);
xlabel("t")
ylabel("f(t)")
hold(axes3,'off');
set(axes3,'FontName','Calibri','FontSize',20,'XAxisLocation','origin',...
'XTick',[-1 -0.5 0 0.5 1],'XTickLabel',{'-\tau','-\tau/2','0','\tau/2','\tau'}, ...
'XLimitMethod','tight','YAxisLocation','origin',...
'YTick',[-1 0 1],'YTickLabel',{'-1','0','1'},'YLimitMethod','tight',...
'ZLimitMethod','tight');
%%
syms w F
f = 8;
w0=2*pi*f;
tau = 1;
F(w) = tau/2*(sinc((w-w0)/(2*pi)*tau)+sinc((w+w0)/(2*pi)*tau));
figure4 = figure;
axes4 = axes('Parent',figure4);
fplot(abs(F),[-5*f*pi/tau 5*f*pi/tau],'Parent',axes4,'MarkerSize',6,'LineWidth',3);
ylim(axes4,[-0.5 tau]);
xlim(axes4,[-6*f*pi/tau 6*f*pi/tau]);
box(axes4,'on');
hold(axes4,'off');
set(axes4,'FontSize',14,'XAxisLocation','origin','XTick', ...
[-w0/tau 0 w0/tau],'XTickLabel',{'-\omega_0','0','\omega_0'},...
'YGrid','on','YAxisLocation','origin','YTick',[0 tau/2],...
'YTickLabel',{'0','\tau/2'});
ylabel('F(\omega)','FontSize',18,'FontName','Calibri');
xlabel('\omega','FontSize',18,'FontName','Calibri');
Again, there are gray dashed lines, this time for the frequencies and .
This meake me think that there is a problem with the sinc function for argument close to or equal 0.
I have done a simple test
>> syms x
>> f = sinc(x)
f =
sin(pi*x)/(x*pi)
>> x = -5:5
x =
-5 -4 -3 -2 -1 0 1 2 3 4 5
>> subs(f)
Error using symengine
Division by zero.
Error in sym/subs>mupadsubs (line 168)
G = mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 153)
G = mupadsubs(F,X,Y);
but
>> sinc(0)
ans =
1
Then I have repeated the calculations for the sinusoidal pule but this time I did not used the symbolic math and I got a bettrer plot.
f = 8;
w0=2*pi*f;
tau = 1;
w = -5*f*pi/tau:0.1*pi:5*f*pi/tau;
% F(w) = tau/2*(sinc((w-w0)/(2*pi)*tau)+sinc((w+w0)/(2*pi)*tau));
F = tau/2*(sinc((w-w0)/(2*pi)*tau)+sinc((w+w0)/(2*pi)*tau));
figure5 = figure;
axes5 = axes('Parent',figure5);
% fplot((abs(F)),[-5*f*pi/tau 5*f*pi/tau],'Parent',axes23,'MarkerSize',6,'LineWidth',3);
plot(w,abs(F),'Parent',axes5,'MarkerSize',6,'LineWidth',3)
ylim(axes5,[0 tau*0.75]);
xlim(axes5,[-6*f*pi/tau 6*f*pi/tau]);
box(axes5,'on');
hold(axes5,'off');
set(axes5,'FontSize',14,'XAxisLocation','origin','XTick', ...
[-w0/tau 0 w0/tau],'XTickLabel',{'-\omega_0','0','\omega_0'},...
'YGrid','on','YAxisLocation','origin','YTick',[0 tau/2],...
'YTickLabel',{'0','\tau/2'});
ylabel('|F(\omega)|','FontSize',18,'FontName','Calibri');
xlabel('\omega','FontSize',18,'FontName','Calibri');
Is there a proble with the sic function for symbolic calculation?

Respuesta aceptada

Paul
Paul el 17 de Oct. de 2022
Editada: Paul el 17 de Oct. de 2022
We can get rid of the vertical asymptote with:
syms x y w F
A = 1;
tau = 1;
F = A*tau*sinc(w/(2*pi)*tau);
figure
fplot(abs(F),[-12*pi/tau 12*pi/tau],'ShowPoles','off')
ylim([0 1])
Or
figure
fplot(w,abs(F),[-12*pi/tau 12*pi/tau])
ylim([0 1])
Of course, either approach also removes the aysmptotes for actual poles that might be of interest, should any exist.

Más respuestas (1)

Walter Roberson
Walter Roberson el 14 de Oct. de 2022
y(x) = piecewise((x<-tau/2), 0, ...
(x==tau/2 & x==tau/2), 0.5, ...
(x>-tau/2 & x<tau/2), 1, x>0.5, 0);
(x==tau/2 & x==tau/2) is redundant. If you want to test for equality with tau/2 then use a single condition. If you want to test for it being either tau/2 or -tau/2 then use the correct condition, (x==-tau/2 | x == tau/2)
The x>0.5 seems inconsistent with the rest of the tests. It would make more sense if you were testing x>tau/2
Perhaps you want
y(x) = piecewise(abs(x) < tau/2, 1, ...
abs(x) == tau/2, 0.5, ...
0);
  3 comentarios
Walter Roberson
Walter Roberson el 14 de Oct. de 2022
Instead of subs(f) use
arrayfun(@(X) limit(f, X), x)
This will be slower.
Or you could create a mask
sincs = zeros(size(x));
mask = x ~= 0;
sincs(mask) = subs(f, x(mask));
sincs(~mask) = 1;
BLP
BLP el 17 de Oct. de 2022
Thank you again.
As far as I unederstand your suggwation it will solve the problem with symboli calculation of which by definition should be , but does it make sense to calculate the limit value for using arrayfun? Moreover, does it not mean that I will ned to calculate the values of the function before I will plot it. Is there any other method to plot the function without prior substitution using the fplot function like in the following example
syms w F
F = A*tau*sinc(w/(2*pi)*tau);
fplot(abs(F),[-12*pi/tau 12*pi/tau]);
and get a proper plot?
The solution with mask will work, but seems unnatural to me.
Bay the way, wuld it not be better to use
sincs = ones(size(x));
mask = x ~= 0;
sincs(mask) = subs(f, x(mask));
And again, this is a substitution which I would like to avoid.

Iniciar sesión para comentar.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by