How to solve a non-linear system of differential equations?

7 visualizaciones (últimos 30 días)
Hello I´m trying to solve this system of differential equations, but I don´t know how. I´ve tried with dsolve, but Matlab dont find an analytical solution, So I try with ODEs functions, but I dont know how to convert my symbolic system to a system that Ode45 can solve. I try with matlabfunction but I dont know use it fine.
clc; clearvars;
syms wp(t) wt(t) ws(t) Q(t);
p = 840;
A = 0.0097;
ap = deg2rad(18.01);
at = deg2rad(-59.04);
as = deg2rad(59.54);
Rp = 0.11;
Rs = 0.060;
Rt = 0.066;
Ts = 0;
Tp = 200;
Tt = -Tp;
Ip = 0.092;
It = 0.026;
Is = 0.012;
Sp = -0.001;
St = -0.00002;
Ss = 0.002;
Lf = 0.28;
PL = 0.5;
eqn1 = Ip*diff(wp,t) == - p*Q(t)*(wp(t)*Rp^2 + Rp*Q(t)/A*tan(ap) - ws(t)*Rs^2 - Rs*Q(t)/A*tan(as)) + Tp;
eqn2 = It*diff(wt,t) == - p*Q(t)*(wt(t)*Rt^2 + Rt*Q(t)/A*tan(at) - wp(t)*Rp^2 - Rp*Q(t)/A*tan(ap)) + Tt;
eqn3 = Is*diff(wt,t) == - p*Q(t)*(ws(t)*Rs^2 + Rs*Q(t)/A*tan(as) - wt(t)*Rt^2 - Rt*Q(t)/A*tan(at)) + Ts;
eqn4 = p*(Sp*diff(wp,t) + St*diff(wt,t) + Ss*diff(ws,t)) + p*Lf/A*diff(Q,t) == p*(Rp^2*wp(t)^2 + Rt^2*wt(t)^2 + Rs^2*ws(t)^2 - Rs^2*wp(t)*ws(t) - Rp^2*wt(t)*wp(t) - Rt^2*ws(t)*wt(t)) + wp(t)*Q(t)/A*p*(Rp*tan(ap) - Rs*tan(as)) + wt(t)*Q(t)/A*p*(Rt*tan(at) - Rp*tan(ap)) + ws(t)*Q(t)/A*p*(Rs*tan(as) - Rt*tan(at)) - PL*p;
eqns = [eqn1,eqn2,eqn3,eqn4];
vars = [wt(t) ws(t) wp(t) Q(t)];
S = dsolve(eqn1,eqn2,eqn3,eqn4, wp(0)==0, wt(0)==330,ws(0)==300,Q(0)==0.05);
odesfcn = matlabFunction(eqns,'Vars',{t,wt,ws,wp,Q});
t_interval = [0,10];
init_cond = [0,0,0,0]';
[t,y] = ode45(odesfcn, t_interval , init_cond);
plot(t,y(:,1),'b',t,y(:,2),'r',t,y(:,3),'g','LineWidth',2);
S = ['wp(t)';'wt(t)';'ws(t)'];
legend(S,'Location','Best')
grid on

Respuesta aceptada

James Tursa
James Tursa el 19 de Oct. de 2022
Editada: James Tursa el 19 de Oct. de 2022
Your equations are linear in the derivatives, so you can form your equations as a matrix equation, then write a derivative function that uses backslash at each step to find the individual derivatives. E.g., let
y = [ ; , , Q]
and thus
A * = b
Where = 4x1 vector [ ; ; ; ]
b = 4x1 right hand side vector (nonlinear functions of , , , Q, and constants)
A = 4x4 coefficients of elements in your equations
function ydot = myderivative(t,y, ... other constants ...)
A = (form the 4x4 matrix elements here)
b = (form the right hand side 4x1 vector elements here)
ydot = A\b;
end
Then use this function in your call to the integrator (e.g., ode45):
ode45(@(t,y)myderivative(t,y, ... other constants ...),tspan,initial_conditions)
  3 comentarios
James Tursa
James Tursa el 19 de Oct. de 2022
Editada: James Tursa el 19 de Oct. de 2022
Well, the equations/coefficients have to be typed in manually in either case. If they are already typed in one form then yes equationsToMatrix( ) could help. But in fact it looks like there already are mistakes in eqn1, eqn2, and eqn3 above because I don't see any term.
Pacao Andrés Barros Díaz
Pacao Andrés Barros Díaz el 22 de Oct. de 2022
Thank you, It's works. I fixed eqns 1,2 and 3 and use equationsToMatrix to create A and B.

Iniciar sesión para comentar.

Más respuestas (1)

Paul
Paul el 19 de Oct. de 2022
Hi Pacao,
The missing step is a call to odeToVectorField before the call to matlabFunction. Check that first doc page and then feel free to post back if it's still not working for you.

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by