GA fitness function with variables in a summation
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Nima
el 8 de Nov. de 2022
Comentada: Star Strider
el 10 de Nov. de 2022
What is the best way to define the following fitness function for GA optimization?
where are the variables to be found with GA-toolbox. N can be a positive integer.
2 comentarios
Respuesta aceptada
Star Strider
el 8 de Nov. de 2022
Editada: Star Strider
el 8 de Nov. de 2022
I still do not completely understand what you want to do.
Perhaps this —
Z = randn(16,1) + 1j*randn(16,1); % Creeate Data
omega = (0:15).'; % Creeate Data
objfcn = @(b,x) b(1) + 1i.*x.*b(2) + 1./(b(3) + 1j.*x.*b(4)); % Objective Function
Parms = 4; % Number Of Parameters To Be Estimated
ftnsfcn = @(b) norm(Z - objfcn(b,omega)); % Fitness Function
[B,fval,exitflag,output,population,scores] = ga(ftnsfcn, Parms, [],[],[],[], zeros(1,Parms)); % Genetic Algorithm Call
fprintf('\nR\t= %15.3f\nL\t= %15.3f\nG\t= %15.3f\nC\t= %15.3f\n',B)
fprintf('\nFinal Fitness Value = %15.6f\n',fval)
fprintf('\nGenerations = %6d\n', output.generations)
fprintf('\nMessage: %s\n',output.message)
figure
plot(omega, real(Z), 'pm', 'DisplayName','Re(Z)')
hold on
plot(omega, imag(Z), 'pc', 'DisplayName','Im(Z)')
plot(omega, real(objfcn(B,omega)), '-m', 'DisplayName','Re(Z_{est})')
plot(omega, imag(objfcn(B,omega)), '-c', 'DisplayName','Im(Z_{est})')
hold off
grid
legend('Location','best')
I do not understand the reason for the summation in the objective funciton, so I do not use it here.
It may be necessary to run ga a few times to get the best fit (save the results each time), however it should be possible to get a decent fit to your data.
EDIT — Corrected typographical errors.
.
4 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Genetic Algorithm en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!