2x2 Projection matrix of rank 1
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
2 comentarios
Rik
el 24 de Nov. de 2022
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
Respuesta aceptada
Matt J
el 23 de Nov. de 2022
Editada: Matt J
el 23 de Nov. de 2022
a=[1; 2]; n=[3; 4]; x=[5; 6];
r1p(a,n,a)
r1p(a,n,n)
r1p(a,n,x)
function p = r1p(a,n,x)
% computes the action of P, the 2x2 projection matrix of rank 1 having
% a - the sole basis vector for the column space of P
% n - the sole basis vector for the null space of P
a = normalize(a(:),'n');
b = normalize(null(n(:)'),'n');
p = dot(x,b)*a;
end
4 comentarios
Matt J
el 23 de Nov. de 2022
Again, you do not provide what you think is the correct answer, or an explanation of why that answer is correct..
Más respuestas (1)
Moiez Qamar
el 24 de Nov. de 2022
%should work for:
a=[1; 0.01]
n=[0.01; 1]
x=[1; 0]
p=r1p(a,n,x)
%and for:
a=[1; 0];
n=[0; 1];
x=[1; 0];
p = r1p(a,n,x);
function p = r1p(a,n,x)
% computes the action of P, the 2x2 projection matrix of rank 1 having
% a - the sole basis vector for the column space of P
% n - the sole basis vector for the null space of P
xi=[0 -1; 1 0]*n;
chi=xi/(xi'*a);
P=a*chi'
p=P*x
end
1 comentario
Matt J
el 24 de Nov. de 2022
P=a*chi'
outer products are not efficient. That's why the exercise asks for you to compute p without computing P.
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!