How to get the derivate using bvp4c

2 visualizaciones (últimos 30 días)
Syed Mohiuddin
Syed Mohiuddin el 26 de Nov. de 2022
Comentada: Torsten el 27 de Nov. de 2022
I have a coupled non-linear differential equations u''-b1*(t')*(u')+(1+b1*t)*[G1*F1*t+G2*F1*p-F3*P]=0; t''-b2*(t')^2+B*F6*(u')^2+(b2-b1)*t*B*F6*(u')^2-b2*b1*B*F6*t^2*(u')^2=0; p''- A*p=0 and the boundary conditions are u=0,t=1+m,p=1+n at y=-1 and u=0,t=1,p=1 at y=1.
The code is:
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
Alpha.*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
I like to know how to get the derivative value du/dy at y= -1 and y=1 from the above program
Please help me to complete my code.

Respuesta aceptada

Torsten
Torsten el 26 de Nov. de 2022
I assumed Alpha = A in your code.
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
A*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
S = struct with fields:
solver: 'bvp4c' x: [-1 -0.9388 -0.8776 -0.8163 -0.7551 -0.6939 -0.6327 -0.5714 -0.5102 -0.4490 -0.3878 -0.3469 -0.3265 -0.3061 -0.2449 -0.1837 -0.1224 -0.0612 6.9389e-18 0.0612 0.1020 0.1429 0.1837 0.2449 0.3061 0.3673 0.4286 0.4898 0.5510 0.6122 0.6735 … ] y: [6×37 double] yp: [6×37 double] stats: [1×1 struct]
plot(S.x,S.y(1,:))
S.y(4,1) % u'(-1)
ans = 9.1263
S.y(4,end) % u'(1)
ans = -5.8619
  4 comentarios
Syed Mohiuddin
Syed Mohiuddin el 27 de Nov. de 2022
yeh, i know, but i want to make sure the solution is correct. Thank you very much
Torsten
Torsten el 27 de Nov. de 2022
So you should come to the result that
S.y(5,1) is dt/dy at y = -1
S.y(5,end) is dt/dy at y = 1
S.y(6,1) is dp/dy at y = -1
S.y(6,end) is dp/dy at y = 1

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by