How to vectorize the evaluation of a kernel function.
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jingyu
el 27 de Nov. de 2022
Comentada: Jingyu
el 5 de Dic. de 2022
I have a kernal function
which is defined for
. And now I have to compute a matrix
for m points
and n points
, where K is given by
. It is direct when using two for loop. But how can I vectorize the evaluation? For example, I tried
k_fun = @(x, y) 1 / norm(x - y);
d = 2; % Make d = 1 if you want it runs correctly.
m = 100;
n = 100;
x_points = rand(m, d);
y_points = rand(n, d);
% The following code is the two for loop version.
K = zeros(m, n);
for i = 1 : m
for j = 1 : n
K(i, j) = k_fun(x_points(i,:), y_points(j, :));
end
end
% The folloing code works when d = 1, but when d > 1 it failes.
K = k_fun(x_points, y_points');
% When d > 1, the error is "Arrays have incompatible sizes for this
% operation."
When
, it gives the result I want, But for
, it failes. How can I improve it?
6 comentarios
Jan
el 5 de Dic. de 2022
@Jingyu: "I have told you the code will occur error" - yes, you did. Please insert the error message also in future questions.
While your code is vectorized already, you let the readers guess, what you want to achieve. All we know, is that your kernal function is "special" and the not working code.
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!