Solve a nonlinear equation with constrains

1 visualización (últimos 30 días)
Miraboreasu
Miraboreasu el 15 de Dic. de 2022
Editada: Torsten el 16 de Dic. de 2022
Hello,
clear
p0=1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 5e6;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a*t) - exp(-b*t))/(exp(-a*t0) - exp(-b*t0)))-c;
r=1.5;
roots = fzero(func,r)
my equation is the func.
where a and b are,
  1 comentario
Bora Eryilmaz
Bora Eryilmaz el 15 de Dic. de 2022
Editada: Bora Eryilmaz el 15 de Dic. de 2022
Your function "p(t)" (func in your code) is not a function of time since you are assigning a fixed scalar value to "t" in your code. So, func() is a function of r, with a fixed "t". So what you are really solving here is p(r) = 0 given fixed values for t, t0, a, b, c.
You will need to reformulate your problem.

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 15 de Dic. de 2022
p0 = 1000e6;
t0 = 1e-6;
td = 1e-6;
t = t0 + td;
c = 7.5e8;
a = @(r)log(r)./(t0*(r-1.0));
b = @(r)a(r).*r;
func= @(r) p0*((exp(-a(r)*t) - exp(-b(r)*t))./(exp(-a(r)*t0) - exp(-b(r)*t0))) - c;
r = 0.001:0.1:10;
plot(r,func(r))
root1 = fzero(func,[0.001 0.75])
root1 = 0.5000
root2 = fzero(func,[1.1 2.5])
root2 = 2.0000
  2 comentarios
Miraboreasu
Miraboreasu el 15 de Dic. de 2022
Thanks, but if I keep c=5e6, it won't work
Torsten
Torsten el 15 de Dic. de 2022
Editada: Torsten el 16 de Dic. de 2022
Yes, because no roots exist. Plot the function, and you will see that it does not cross the r-axis.
Note for functions that only depend on one variable: First plot, then solve.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Systems of Nonlinear Equations en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by