RK23 with given coefficients

5 visualizaciones (últimos 30 días)
lord_eul3r
lord_eul3r el 18 de Dic. de 2022
Comentada: lord_eul3r el 18 de Dic. de 2022
I have an IVP; ; ;
and
I want to use RK23, but it seems my 'C' coefficient is unused as the RHS of my equation, f(u), only has one argument i.e u.
function udot = eqns(u)
udot=(-sin(2*pi*u));
end
I know it has to be used somewhere but I can't figure this out. Below is my code so far
function [u, h] = func_particle_rk3_generic(u_0, tmax, N)
a = zeros(3,3);b = zeros(1,3);c = zeros(3,1);
h = tmax/N;
u = u_0;
t = [0,tmax];
for i = 1:N
t(i+1) = i*h;
k(:,1)=eqns(u);
k(:,2)=eqns(u+h*(a(2,1)*k(:,1)));
k(:,3)=eqns(u+h*(a(3,1)*k(:,1)+a(3,2)*k(:,2)));
u = u + h*(b(1)*k(:,1) + b(2)*k(:,2) + b(3)*k(:,3));
end
It doesn't gives me an error, but it doesn't also gives me the accuracy I want to get when compared to the uExact
  3 comentarios
lord_eul3r
lord_eul3r el 18 de Dic. de 2022
a = zeros(3,3);b = zeros(1,3);c = zeros(3,1);
these are representations of the RK23 Butcher Tableau(see attached photo on question)
in a separate script, I'd call them out as:
a = zeros(3,3);b = zeros(1,3);c = zeros(3,1);
a(2,1) = 1/3;a(3,2) = 2/3;
b(1) = 1/4;b(3) = 3/4;
c(2) = 1/3;c(3) = 2/3;
here, my concern is the 'C' values above which i didn't get to ues or don't know when to use.
lord_eul3r
lord_eul3r el 18 de Dic. de 2022
I think I understand why I don't need the C coefficient (IN THIS PARTICULAR CASE).
Because f doesn't depend explicitly on t, only on u. I stands corrected though

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 18 de Dic. de 2022
Yes, it's unused in your equation.
But you could generalize your code as to include it:
u0 = 0.45;
f = @eqns;
f_exact = @(t)1/pi*atan(exp(-2*pi*t)*tan(pi*u0));
tmax = 0.5;
N = 100;
[T,U] = func_particle_rk3_generic(f,u0,tmax,N);
hold on
plot(T,U)
plot(T,f_exact(T))
grid on
function [t,u] = func_particle_rk3_generic(f,u0,tmax,N)
a = zeros(3,3);
b = zeros(1,3);
c = zeros(3,1);
a(2,1) = 1/3;
a(3,2) = 2/3;
b(1) = 1/4;
b(3) = 3/4;
c(2) = 1/3;
c(3) = 2/3;
h = tmax/N;
u(1) = u0;
t(1) = 0.0;
for i = 1:N-1
k(:,1) = f(t(i),u(i));
k(:,2) = f(t(i)+c(2)*h,u(i)+h*(a(2,1)*k(:,1)));
k(:,3) = f(t(i)+c(3)*h,u(i)+h*(a(3,1)*k(:,1)+a(3,2)*k(:,2)));
u(i+1) = u(i) + h*(b(1)*k(:,1) + b(2)*k(:,2) + b(3)*k(:,3));
t(i+1) = t(i) + h;
end
end
function udot = eqns(t,u)
udot=(-sin(2*pi*u));
end

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by