Difference Between Built-in Periodogram and Self-Calculated Periodogram
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
tinkyminky93
el 24 de Dic. de 2022
Comentada: Sulaymon Eshkabilov
el 24 de Dic. de 2022
Hello,
I have the following code block. Im just trying to calculate the periodogram of the signal 'x' with built-in periodogram function and without built-in periodogram function. I got the same pattern but the amplitudes are not equal. What am I missing there? Thank you for your help.
clc
clear
close all
j = sqrt(-1);
n = 1:1:256;
noise_mean = 0;
noise_deviation = sqrt(5);
noise = noise_deviation.*randn(1,256) + noise_mean;
x = 20*exp(j*2*pi*(0.15)*n) + 30*exp(j*2*pi*(0.20)*n) + noise;
N = length(x); % N point FFT
for k = 1:N
Sx(k) = 0;
for n = 1:N
Sx(k) = Sx(k)+x(n)*exp(-1i*2*pi*(k-1)*(n-1)/N);
end
end
Sx = (1/N)*abs(Sx).^2;
figure
plot(10*log10(Sx)) , title('Periodogram without Built-in');
figure
plot(10*log10(periodogram(x))), title('Built-in Periodogram');
0 comentarios
Respuesta aceptada
Sulaymon Eshkabilov
el 24 de Dic. de 2022
The only thing that you are missing that you ahve not specified FFT window size when you've employed MATLAB's builtin fcn:
clc
clear
close all
j = sqrt(-1);
n = 1:1:256;
noise_mean = 0;
noise_deviation = sqrt(5);
noise = noise_deviation.*randn(1,256) + noise_mean;
x = 20*exp(j*2*pi*(0.15)*n) + 30*exp(j*2*pi*(0.20)*n) + noise;
N = length(x); % N point FFT
for k = 1:N
Sx(k) = 0;
for n = 1:N
Sx(k) = Sx(k)+x(n)*exp(-1i*2*pi*(k-1)*(n-1)/(N));
end
end
Sx = (1/N)*(abs(Sx).^2);
figure
plot(10*log10(Sx)) , title('Periodogram without Built-in');
figure
plot(10*log10(periodogram(x, [], N, 1))), title('Built-in Periodogram'); % FFT Window size is specified
figure
plot(10*log10(Sx), 'b-', 'linewidth', 2.5, 'DisplayName', 'Manual Calc') , hold on
plot(10*log10(periodogram(x,[], N, 1)), 'DisplayName', 'Built-in Periodigram'), title('Built-in Periodogram vs. Manual Calc');
legend('toggle'), grid on
2 comentarios
Sulaymon Eshkabilov
el 24 de Dic. de 2022
It is quite straightforward. N is Discrete Fourier Transform window size (also called resolution), which you set equal to the length of your generated signal (N = length(x)), and 1 corresponds to the sampling frequency. In your example, Fs is 1, becuase n = 1:1:256. [] is coming from the syntax of periodigram() fcn becuase of the other chosen parameters.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!