maximizing objective function with equality and inequality constraints

1 visualización (últimos 30 días)
Hi,
I want to estimate x_1 ,...,x_4 by maximizing
subject to and ,
which function can help me to solve this problem ,
Also, how can I convert this objective function to be convex if that is possible.
Thanks in advance
  1 comentario
Torsten
Torsten el 20 de En. de 2023
Editada: Torsten el 23 de En. de 2023
x1=x2=x3=0, x4=1
Should be obvious because the coefficient of x4 has the maximum value of all coefficients.
And your objective function is convex.

Iniciar sesión para comentar.

Respuesta aceptada

Aditya
Aditya el 23 de En. de 2023
Editada: Aditya el 23 de En. de 2023
Hi,
I understand that you want to solve this linear programming problem.
The solution for your example is trivial, as pointed out by @Torsten in comments.
In general, you can also use the linprog function to solve such problems. Here is an example to arrive at the trivial solution for your example.
Based on the documentation of linprog, I have defined the variables:
f = [4.22117991, 4.21111679, 4.22994893, 4.23060394];
Aeq = [1, 1, 1, 1];
lb = [0, 0, 0, 0];
beq = [1];
x = linprog(-f, [], [], Aeq, beq, lb, []);
You can see that the variable x is [0;0;0;1] which is the trivial solution to this problem.
The reason why I have passed negative f ( -f ) is because linprog minimizes the objective function. So, in order to maximize f, we minimize -f.
  8 comentarios
Aditya Mahamuni
Aditya Mahamuni el 23 de Jun. de 2023
And what can i do if i want to use the linprog function in simulink and use it at every time step ? Because when i use it, it shows me an error that "the function 'linprog' is not supported for code generation."

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by