maximizing objective function with equality and inequality constraints
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Az.Sa
el 20 de En. de 2023
Comentada: Torsten
el 23 de Jun. de 2023
Hi,
I want to estimate x_1 ,...,x_4 by maximizing
subject to and ,
which function can help me to solve this problem ,
Also, how can I convert this objective function to be convex if that is possible.
Thanks in advance
1 comentario
Respuesta aceptada
Aditya
el 23 de En. de 2023
Editada: Aditya
el 23 de En. de 2023
Hi,
I understand that you want to solve this linear programming problem.
In general, you can also use the linprog function to solve such problems. Here is an example to arrive at the trivial solution for your example.
f = [4.22117991, 4.21111679, 4.22994893, 4.23060394];
Aeq = [1, 1, 1, 1];
lb = [0, 0, 0, 0];
beq = [1];
x = linprog(-f, [], [], Aeq, beq, lb, []);
You can see that the variable x is [0;0;0;1] which is the trivial solution to this problem.
The reason why I have passed negative f ( -f ) is because linprog minimizes the objective function. So, in order to maximize f, we minimize -f.
8 comentarios
Aditya Mahamuni
el 23 de Jun. de 2023
And what can i do if i want to use the linprog function in simulink and use it at every time step ? Because when i use it, it shows me an error that "the function 'linprog' is not supported for code generation."
Torsten
el 23 de Jun. de 2023
I have no experience with this coupling, but this contribution might be helpful:
Más respuestas (0)
Ver también
Categorías
Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!